
Collaborative Resource Management and Workloads
Scheduling in Cloud-Assisted Mobile Edge

Computing across Timescales
Lujie Tang1,2, Minxian Xu1,∗, Chengzhong Xu3 and Kejiang Ye1,∗

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences

3 University of Macau
{lj.tang, mx.xu, kj.ye}@siat.ac.cn, czxu@um.edu.mo

Abstract—Due to the limited resource capacity of edge servers
and the high purchase costs of edge resources, service providers
are facing the new challenge of how to take full advantage of the
constrained edge resources for Internet of Things (IoT) service
hosting and task scheduling to maximize system performance.
In this paper, we study the joint optimization problem on ser-
vice placement, resource provisioning, and workloads scheduling
under resource and budget constraints, which is formulated as
a mixed integer non-linear programming problem. Given that
the frequent service placement and resource provisioning will
significantly increase system configuration costs and instability,
we propose a two-timescale framework for resource management
and workloads scheduling, named RMWS. RMWS consists of
a Gibbs sampling algorithm and an alternating minimization
algorithm to determine the service placement and resource pro-
visioning on large timescales. And a sub-gradient descent method
has been designed to solve the workload scheduling challenge on
small timescales. We conduct comprehensive experiments under
different parameter settings. The RMWS consistently ensures
a minimum 10% performance enhancement compared to other
algorithms, showcasing its superiority. Theoretical proofs are also
provided accordingly.

Index Terms—Mobile Edge Computing, Service placement,
Resource provisioning, Workloads scheduling, Across Timescales

I. INTRODUCTION

In recent decades, the rapid development of IoT devices
and network communication technologies have significantly
contributed to the proliferation of IoT application services
[1]–[3]. The emergence of IoT application services, such as
smart transportation, smart factory [4], smart city [5], and
smart home, etc, have captured the attention and interest of
the general public. Typically, IoT devices are constrained by
physical dimensions and battery life, making it challenging to
meet the computational resource and capability requirements
of different application services [6]. Cloud computing is a key
solution to the resource constraints of IoT devices. However,
the wide area network connecting traditional cloud servers
to IoT devices can introduce unpredictable communication

*Corresponding authors.

delays and jitter, potentially causing adverse effects on latency-
sensitive application services.

As an emerging promising computing paradigm, Mobile
Edge Computing (MEC) has attracted growing attention from
both industry and academia [7]–[9]. The distributed archi-
tecture of MEC enables the deployment of services and
data closer to end-users, leading to significant reductions in
response latency and data transmission costs. The appeal of
these advantages has prompted more service providers to
transition their operations to MEC platforms to meet the
growing demand for real-time services. However, compared
to the cloud with elastic resource capacity, the resources in
edge nodes are limited. Only a small number of services or
applications can be accommodated on edge servers.

A more effective approach to address resource scarcity is
to jointly utilize the computation, storage and communication
resources of the nearby edge servers and the remote cloud
server, maximizing edge-edge and edge-cloud cooperation,
achieving load balancing and minimizing execution latency.
Taking the cloud-assisted edge computing system architecture
depicted in Figure 1 as an example, each edge node has its
own region coverage restrictions and resource capacity due
to hardware constraints. IoT devices in different regions will
send service requests to the nearest edge node. If a device
is unable to request a specified service, the request will be
routed to neighboring edge servers capable of handling the
service request or to the cloud server for processing. In Figure
1, it can be observed that different regions have different
types and numbers of workload requests. This also requires
us to dynamically adjust service placement and resource
provisioning based on actual workload conditions to ensure
service performance. In this regard, service providers need
to focus on the following critical issues: service placement,
resource provisioning and workloads scheduling. In gen-
eral, service placement requires dynamically optimizing the
placement of services on edge servers to better utilize edge
server resources [10]–[13]. Resource provisioning requires the
flexibility to adjust resource provisioning for each service to
optimize overall system performance [14]–[16]. Additionally,

Edge nodes

Cloud servers

Services

IoT devices

Region 1

Region 2

Region 3

Workload

Requests

Workload

Requests

Workload

Requests

Edge-Edge

Cooperation

Edge-Edge

Cooperation

Edge-Cloud

Cooperation

Fig. 1. System model.

to balance system workloads and improve system perfor-
mance, workloads scheduling ensures that task requests are
dynamically dispatched to appropriate edge nodes or remote
cloud servers [17]–[19].

However, the aforementioned joint optimization problem
may encounter some challenges. Firstly, the placement of
services directly affects the resources they require and the
scheduling of workloads, while resource provisioning should
match the requirements of the services and their locations. This
indicates a critical need to balance service placement, resource
provisioning, and workloads scheduling. Furthermore, the pop-
ularity of services constantly fluctuates over time and space,
and workload requests may exhibit significant short-term and
long-term variations , which undoubtedly further increase the
difficulty of joint optimization. The conventional approach
is to over-provision resources to ensure service performance,
but this can lead to high costs and low resource utilization.
Therefore, it is essential for service operators to achieve
efficient resource allocation for services. Finally, previous
studies have frequently overlooked the essential requirement
of managing system components across different timescales.
In a real system, workload requests (e.g., HTTP) are easily
transferred to cloud servers or edge nodes for processing due
to their small data size. However, services placement may not
be adjusted fast enough to meet the dynamic requirements of
tasks. For example, configuring services on a new server refers
to downloading the application container (including libraries
and data stores) from the cloud server, adaptive configura-
tions, initializing the service, etc, which requires a certain
amount of time and additional costs. Therefore, it is natural
to manage services and workload requests across two distinct
timescales, i.e., service placement and resource provisioning
can be handled on a larger timescale, whereas workload
request scheduling can take place on a smaller timescale.
This method not only reduces placement costs but also de-
creases the frequency of predicting future workloads. Multi-
timescales approaches have demonstrated greater efficiency
compared to single timescale methods in edge computing
environments [20].

In this study, we tackle the issue above by devising a novel
cloud-assisted mobile edge computing framework for dynamic

resource management and workloads scheduling (RMWS).
Firstly, we formulate the joint optimisation problem of service
placement, resource provisioning and workloads scheduling to
achieve minimised response time. Theoretically, the problem
can be classified as a Mixed Integer Non-Linear Programming
(MINLP) problem, which is difficult to solve directly. Then
considering the complexity of the problem and the inherent
differences in the optimisation periods of the three sub-
problems [21], we have developed a two-timescale framework
that aims to effectively address these issues by accounting for
variations in their respective optimization frequencies. Besides,
since service providers need to make a trade-off between cost
and performance, our approach considers a scenario under
budget constraints (including costs associated with storage
and computation resources) that enable efficient allocation
of computation and storage resources. Our contributions are
summarized as follows:

• We investigate service placement, resource provisioning
and workloads scheduling in a cloud-assisted mobile
edge computing system. Then use queuing theory to
characterize the response time of workloads and formu-
late the optimization goal as a mixed integer non-linear
programming problem.

• We develop a joint optimisation framework under two-
timescales to solve the MINLP problem. On large
timescales, we employ a Gibbs sampling algorithm and
an alternating minimisation method to determine the
service placement and resource provisioning. On small
timescales, we design a sub-gradient descent method to
solve the workload scheduling challenge.

• We conduct comprehensive numerical simulations to
evaluate the performance of the RMWS approach. The
experiment results clearly demonstrate the superiority of
our approach when compared with advanced methods.

II. RELATED WORK

Recently, there has been a significant focus on enhancing
the enforcement of service placement, resource allocation
and computation offloading within edge-edge or edge-cloud
collaboration environments. Based on the optimization with
different timescales, we have categorized the relevant work
into two buckets: single timescale and multiple timescales.

Joint Optimization on the Single Timescale. Edge-cloud
collaboration is considered as an effective treatment to solve
the problem of insufficient resources [22]–[24]. The authors
in [22] presented a mechanism which utilizes parameterized
deep Q network to jointly optimize service placement and
computational resource allocation for task latency reduction.
In [23], the authors focused on the limited resources in edge-
cloud environments and proposed an optimisation method for
joint communication and computational resource allocation.

There are also some studies focusing on Edge-Edge Col-
laboration [25], [26]. In [25], the authors explored the task
offloading issue in ultra-dense networks, aiming to reduce
delay while preserving the battery life of user equipment. The
work [26] examined service placement from the perspective

of the service provider, aiming to minimize the expenses
associated with service deployment in the hierarchical mobile
edge computing network while fulfilling user requirements.

In reality, taking into account both horizontal cooperation
among multiple edge nodes and vertical cooperation between
edge nodes and cloud servers tends to result in more significant
improvements in system performance. Therefore, researchers
have actively explored various potentials in cloud-assisted
mobile edge computing systems [27], [28]. The authors in [27]
addressed the joint optimisation problem under uncertain de-
mand in industrial cyber-physical system. They proposed an
enhanced DQN algorithm for service placement and workload
scheduling, and utilized convex optimization techniques to
address resource allocation challenges. Poularakis et al [28]
designed a service placement and request scheduling scheme
with multidimensional (storage-computation-communication)
constraints on the edge cloud.

However, in the above works, some issues are well-suited
for optimization on a single timescale, such as task scheduling
and task resource allocation. Nevertheless, regarding service
deployment problems, we contend that it is not reasonable
to approach service deployment and workloads scheduling
optimization problems on the same timescale. On one hand,
there is a significant difference in the amount of data between
workloads and services, which results in varying levels of
difficulty in their transmission and distribution. On the other
hand, there is also a discrepancy in the initialization and
startup times between them. If the deployment of services
and resource allocation occur as frequently as the workloads
scheduling, it can result in increased operational costs and
heighten the instability of the system.

Joint Optimization across Multi-timescales. Multi-
timescales optimal design has demonstrated greater efficacy
in fulfilling practical requirements, with a scarcity of corre-
sponding studies [20], [29], [30]. The work [20] proposed
a two-timescale framework for joint service placement and
request scheduling under resource constraints. Considering
user deadline preference and edge clouds’ strategic behaviors,
Li et al. [29] designed a novel perspective on cost reduction
by exploiting the spatial-temporal diversities in workload and
resource cost among federated Edge Clouds. Wei et al. [30]
studied the joint optimization problem of resource placement
and task dispatching in edge clouds across multiple timescales
under the dynamic status of edge servers.

In above studies, when considering the allocation of re-
sources for service deployment, there is a common tendency to
assume fixed CPU and storage configurations for the services.
However, there is a lack of consideration from the perspec-
tive of the service provider in dynamically optimizing and
adjusting the allocation of computation resources for services
to meet the latency requirements of time sensitive tasks. In
addition, a critical factor that has been overlooked is the budget
constraints for service providers to purchase server resources
for service deployment. Therefore, we shift our focus to a full
exploration of joint optimisation problems across timescales
in our research.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview
We consider a typical cloud-assisted mobile edge comput-

ing system depicted in Figure 1, consisting of IoT devices,
edge servers, and a remote cloud server. Define the set of
edge servers as L = {1, 2, ..., i, ..., L} and the cloud server
is indexed as L + 1. Each edge server i has a maximal
computation capacity Fi and storage capacity Mi. The price
of all storage and computation resources in edge server i
are defined as Pm

i and P f
i . The set of all possible services

is S = {1, 2, ..., s, ..., S}. For each service s, it needs an
amount of storage resources ms to cache related data which
including software, databases and models, etc. We assume
that cs is the required CPU cycles to process corresponding
tasks. Each service can be deployed in a specific set of edge
servers and each edge server can also host various services
depending on its available resources. In addition, all services
will be deployed in the cloud. We use a Poisson process
to characterize the dynamics of task arrivals at edge nodes
with the arriving rate ni,s [17]. Then the total number of task
requests for service s is noted as ns =

∑L
i=1 ni,s.

Service Placement Problem: Let binary variable xi,s ∈
{0, 1} indicator whether service s is placed at edge server
i. The service placement decisions set is denoted as X =
{xi,s|i ∈ L, s ∈ S}. Since the limited storage resource on
edge node, the aservice placements at edge server i can not
exceed the storage constrains:

∑S
s=1 xi,sms ≤ Mi.

Resource Provisioning Problem: Let yi,s ∈ [0, 1] represent
the fraction of computation capacity allocated to service s. The
resource allocation set is denoted as Y = {yi,s|i ∈ L, s ∈ S}.
Here,

∑S
s=1 yi,s ≤ 1. Considering the budget constraints P bud

i

of edge server i , pi =
∑S

s=1 xi,s

(
ms

Mi
pmi + yi,sP

f
i

)
≤ P bud

i .

Workload Scheduling Problem: Let zi,s ∈ [0, 1] represent
the workload ratio of the service s executed at edge service i.
The workload scheduling policy is denoted as Z = {zi,s|i ∈
(L ∪ L + 1), s ∈ S}. For each service s, the workload ratio
needs to satisfied the following constrains:

∑L+1
i=1 zi,s = 1.

B. Latency Model
The latency described in our model consists of both trans-

mission latency and computation latency.
The Response Latency of Edge Servers: Since IoT

devices are usually close to the wireless access point, we
ignore the transmission latency between IoT devices and
edge servers [31]. Assuming the transmission latency of the
task served by service s between edge servers is ϕs, the
transmission latency T tran

i,s can be obtained as:

T tran
i,s = max{zi,sns − ni,s, 0} · ϕs. (1)

We model the execution of tasks on the edge server as
an M/M/1 queue and the computation latency T com

i,s of tasks
served by service s which processed in edge server i can be
computed as:

T com
i,s =

zi,sns

yi,sFi/cs − zi,sns/∆t
. (2)

To ensure the stability of the queue or avoid infinite queue
length, according to queue theory we have:

yi,sFi

cs
− zi,sns

∆t
> 0, ∀i ∈ L, ∀s ∈ S. (3)

In brief, the total service response latency of the task offload-
ing to the edge servers can be expressed as:

Ti =
∑
s∈θi

(T com
i,s + T tran

i,s), (4)

where θi denotes the set of services placed on edge server i.
The Response Latency of Cloud Servers: Given a well-

supplied cloud data center with sufficient computation re-
sources and all required services, our focus is solely on the
transmission latency for offloading tasks to the cloud server,
disregarding computation latency [22], [32]. Let ϕc,s be the
transmission delay for the task served by service s transferring
to the cloud server. Therefore the total transmission latency of
the task served by service s offloading to the cloud server can
be obtained as:

T tran
c,s = zL+1,snsϕc,s. (5)

The total response latency of the task offloading to the cloud
server can be obtained as:

Tc =

S∑
s=1

T tran
c,s =

s∑
s=1

zL+1,snsϕc,s. (6)

C. Problem Formulation

In our work, we jointly optimized the edge service place-
ment, resource provisioning, and workloads scheduling poli-
cies, aiming at minimizing response time. Therefore, we
formally define the problem as follows, denoted as P1. By
observing, we identify it as a Mixed Integer Non-Linear
Programming (MINLP) problem, which is challenging to solve
directly.

P1 : min
X ,Y,Z

Ttotal = min
X ,Y,Z

L∑
i=1

Ti + Tc (7)

s.t.

S∑
s=1

xi,sms ≤ Mi, ∀i ∈ L (C1)

S∑
s=1

yi,s ≤ 1, ∀i ∈ L (C2)

L+1∑
i=1

zi,s = 1, ∀s ∈ S (C3)

Pi ≤ P bud
i , ∀i ∈ L (C4)

zi,snscs − yi,sFi∆t < 0, ∀i ∈ L, ∀s ∈ S (C5)
xi,s ∈ {0, 1}, ∀i ∈ L, ∀s ∈ S (C6)
yi,s ∈ [0, 1], ∀i ∈ L, ∀s ∈ S (C7)
zi,s ∈ [0, 1], ∀i ∈ L, ∀s ∈ S (C8)

IV. RESOURCE MANAGEMENT AND WORKLOADS
SCHEDULING ACROSS TIMESCALES

A. Problem Decoupling

Considering the complexity of the problem P1, we decou-
pled this problem and designed a two-timescale framework as
displayed in Figure 2. The variables related to the time frame
are denoted with the superscript f and subscript frame and
those related to the time slot are denoted with the superscript
t and subscript slot.

sl
o

t
 1

sl
o

t
 2

sl
o

t
 T

1

...

Time Frame 1

sl
o

t
 2

sl
o

t
 T

2

...

sl
o

t
 1

sl
o

t
 2

sl
o

t
 T

3

...

sl
o

t
 1 ...

Workload scheduling
on small timescales

 Service placement and resource
provisioning on large timescales

Time Frame 2 Time Frame 3

Fig. 2. Joint optimization across two-timescale.

At the start of time frame f, we solve problem P1 in an
iterative manner with the predicted request numbers ni,s =

nf
i,s, ns = nf

s and ∆t = ∆tf . Note that only Xframe and
Yframe will be used in the time frame f , and Zframe will
not be used for actual scheduling (named shadow workload
scheduling), but it plays an important role in assessing the
given service placement and resource allocation strategies. At
the start of time slot t, the request numbers ni,s = nt

i,s, ns =
nt
s and ∆t = ∆tt, based on the optimal X ∗

frame and Y∗
frame

determined by time frame f, we perform optimal workload
scheduling Z∗

slot in each time slot.
On large timescales, we decompose problem P1 into sev-

eral sub-problems and solve them using a two-layer iterative
algorithm. In the outer layer, we update service placement
decisions based on Gibbs sampling [33]. In the inner layer, we
solve resource provisioning and shadow workload scheduling
with alternating minimization algorithm. On small timescales,
the service placement decisions and resource allocation are
given and problem P1 is reduced to the workload scheduling
problem. we solve it based on the sub-gradient method. The
flowchart of the RMWS algorithm is depicted in Figure 3.

B. service placement algorithm based on Gibbs sampling

Gibbs sampling is a Markovian Monte Carlo method com-
monly employed for dealing with multidimensional random
variables. It can be introduced by the properties of Markov
chains and transition probability matrix to conclude that its
sampling distribution eventually converges to the joint distribu-
tion [34]. The core concept of Gibbs sampling is to randomly
change one of the variable while keeping the rest of variables
unchanged, repeating the iterations until convergence.

In the outer layer, we use the idea of Gibbs sampling to find
the optimal service placement decisions with objective value of
P1. We consider the process of updating the service placement
decisions as a L-dimensional Markov chain in which the ith

P3: solve the resource provisioning
subproblem with Lagrange

Multiplier method

 algorithm

(Algorithm 2)

rithm

The Large Timescales

rithm algorithm

gradient method (Algorithm 3)
The Small
Timescales

The optimal service
placement decisions

The optimal resource
allocation strategy

P1: Dynamic Resource Management and Workloads Scheduling across
Timescales (RMWS)

P4: Solve the workload scheduling w ith sub-

P4: Solve the shadow workload
rithm scheduling subproblem with sub-

gradient method

P2: Solve resource provisioning
and shadow workload

scheduling with alternating
minimization algorithm

Solve the service placement
 subpr ao lblge om ritwiht mh Gibbs
sampling (Algorithm 1)

Fig. 3. The flowchart of the RMWS algorithm

dimension corresponds to ith edge server service placement
decision and the algorithm is shown in Algorithm 1. In
each iteration, the algorithm randomly selects an edge server
k to update its service placement decision xk to x#

k while
ensuring that the rest edge servers remain unchanged. Thus the
optimization problem P1 can be converted into the following
optimization problem P2 with the given service placement
decisions of all edge servers:

P2 : min
Y,Z

Ttotal = min
Y,Z

L∑
i=1

Ti + Tc, (8)

s.t. C2− C5, C7− C8

The problem P2 will be addressed in the Section IV-C. And
after solving it, we can obtain the optimal objective value
ϑ (defined as ϑ = minY,Z Ttotal). The ϑ will change to
ϑ# when the edge server k updates decision xk to x#

k with
the probability ρ = 1

1+e(ϑ
#−ϑ)/ω

and keep unchanged with
probability (1−ρ), where ω is a smooth parameter and ω > 0.

Theorem 1. As the value of ω decreases, Algorithm 1 is
more likely to converge to the global optimal for problem
P1 and will converge to the global optimal solution with
probability 1 when ω → 0.

Proof. Please see Appendix A.

C. Optimal resource provisioning and shadow workload
scheduling with alternating minimization algorithm

Once the service placement decisions are determined in the
outer layer, we face the task of resolving the resource allo-
cation and workload scheduling problem, referred to as P2 in
the inner layer. It can be proved that the optimization problem
P2 is a non-convex problem with two variables (yi,s, zi,s)
and solving it directly remains a challenging task. Thus, we
propose an alternating minimization algorithm, whose detailed
procedure is shown in Algorithm 2.

When we fix the variable zi,s as a constant value z∗i,s, then
the problem P2 can be converted into the following problem

Algorithm 1 Service Placement Based on Gibbs Sampling
Input:

Fi, Mi, p
f
i , pmi , pbudi , ms, cs, ni,s

Output:
The optimal service placement decisions Xm

frame and
resource allocation strategy Ym

frame

1: Initialize service placement decisions X 0
frame

2: for each iteration m = 1,2,... do
3: Randomly select an edge server k ∈ L and an available

service placement decision x#
k ∈ Xk;

4: if x#
k is feasible then

5: Use Algorithm 2 to compute Ym−1
frame, Zm−1

frame

and the corresponding ϑ by solving P2, based on
(xm−1

1 , ..., xm−1
k , ..., xm−1

L).
6: Use Algorithm 2 to compute Y#

frame, Z#
frame and

the corresponding ϑ# by solving P2, based on
(xm−1

1 , ..., x#
k , ..., x

m−1
L).

7: Let ρ = 1

1+e(ϑ
#−ϑ)/ω

.

8: xm
k = x#

k , Ym
frame = Y#

frame, Zm
frame = Z#

frame

with the probability ρ.
9: xm

k = xm−1
k , Ym

frame = Ym−1
frame, Zm

frame = Zm−1
frame

with the probability 1− ρ.
10: end if
11: if the stopping criterion is satisfied then
12: Return Xm

frame, Ym
frame

13: end if
14: end for

P3 with respect to yi,s. it is easy to prove that this problem
is a convex optimization problem, and classical Karush-Kuhn-
Tucker (KKT) conditions [35] can be applied to find a closed-
form solution. See Sub-section D for more details.

P3 : min
Y

Ttotal = min
Y

L∑
i=1

Ti + Tc, (9)

s.t. C2, C4− C5, C7

Similarly, when we fix the variable yi,s as a constant value
y∗i,s, then the optimization problem P2 can be converted into
the following problem P4 with respect to zi,s. It is easy to
prove that this problem is a convex optimization problem, and
the sub-gradient descent method can be applied to find the
optimal solution. See Sub-section E for more details.

P4 : min
Z

Ttotal = min
Z

L∑
i=1

Ti + Tc, (10)

s.t. C3, C5, C8

Theorem 2. Problem P2 is a non-convex optimization
problem for a given optimal service placement decisions X ∗.

Proof. Please see Appendix B.
Theorem 3. The P3 and P4 are the convex optimization

problems.
Proof. Please see Appendix C.

Algorithm 2 Alternating Optimization-Based Algorithm
Input:

The service placement decisions Xframe, task request
numbers in time frame nf

i,s, error tolerance threshold ϵ
Output:

The optimal resource allocation strategy Yn
frame and

shadow workload scheduling Zn
frame under the service

placement decisions Xframe.
1: Initialize Z0

frame.
2: Obtain Y0

frame based on the Lagrange multiplier method.
3: Calculate f(Z0

frame) and g(0) according to Eq.(10) and
Eq.(16)

4: for each iteration n = 1,2,... do
5: Update the shadow workload scheduling vector by Eq.

(15) and perform the weighting operation to satisfy
constraint C3 and C8.

6: Obtain resource allocation strategy Yn
frame based on the

Lagrange multiplier method.
7: Calculate f(Zn

frame) and g(n) according to Eq.(10) and
Eq.(16)

8: if |f(Zn
frame)− f(Zn−1

frame)| ≤ ϵ then
9: Return Yn

frame, Zn
frame

10: end if
11: end for

D. Optimal resource provisioning with Lagrange Multiplier
method

According to Theorem 3, problem P3 is can be solved by
the Lagrange multiplier method [36]. The Lagrangian function
for problem P3 is established as follows:

L(f(Y), λ, µ) = f(X ∗,Z∗,Y) +

L∑
i=1

λi(
∑
s∈θi

yi,s − 1) (11)

+

L∑
i=1

µi

[∑
s∈θi

(
ms

Mi
Pm
i + yi,sP

f
i

)
− P bud

i

]
.

where λ and µ are the Lagrangian multiplier. Then as shown
in Theorem 4, we can derive the optimal solution by using
KKT conditions.

Theorem 4. The optimal solution of problem P3 is given
as follows.

Case 1: if Γi < 1, the optimal solution is given by

y∗i,s =

√
z∗i,snscs(ΓiFi∆t−

∑
s∈θi

z∗i,snscs)∑
s∈θi

√
z∗i,snscsFi∆t

+
z∗i,snscs

Fi∆t
.

(12)

Case 2: if Γi ≥ 1, the optimal solution is given by

y∗i,s =

√
z∗i,snscs(Fi∆t−

∑
s∈θi

z∗i,snscs)∑
s∈θi

√
z∗i,snscsFi∆t

+
z∗i,snscs

Fi∆t
,

(13)

where Γi =

(
pbudi −

∑
s∈θi

ms

Mi
Pm
i

)
/P f

i .

Proof. Please see Appendix D.

E. Optimal shadow workload scheduling with sub-gradient
method

The key challenge of Problem P4 is that Eq. (10) is
continuous but non-differential (or non-smooth) at zi,sns =
ni,s. As a result, it is difficult to use the traditional KKT
conditions directly and find a closed-form solution. For non-
differential convex problems, a common approach is the sub-
gradient descent method [37]. Therefore, we design an efficient
algorithm based on sub-gradient descent. The sub-gradient of
optimization objective P4 is represented as : ∂f(Z)

∂zi,s

=

nscsy
∗
i,sFi∆t2

(y∗
i,sFi∆t−zi,snscs)2

+ nsϕs zi,sns > ni,s, i ∈ L[
nscsy

∗
i,sFi∆t2

(y∗
i,sFi∆t−zi,snscs)2

,

nsϕs +
nscsy

∗
i,sFi∆t2

(y∗
i,sFi∆t−zi,snscs)2

]
zi,sns = ni,s, i ∈ L

nscsy
∗
i,sFi∆t2

(y∗
i,sFi∆t−zi,snscs)2

zi,sns < ni,s, i ∈ L
nsϕc,s i = L+ 1

(14)

The problem P4 can be solved by sub-gradient descent
method in the following iteration:

z
(n+1)
i,s = z

(n)
i,s − αng

(n), (15)

where z
(n)
i,s denotes the value of the nth iteration of zi,s, αn >

0 denotes the step size of the nth iteration and g is the sub-
gradient of the function f(Z) at z(n)i,s , it can be written as

g =

{
∂f(Z), subject to C5
∂(zi,snscs − y∗i,sFi∆t), if (zi,snscs − y∗i,sFi∆t) > 0.

(16)

Notice that the constraints C3 and C8 will be satisfied by
weighted operation, and ∂(zi,snscs − y∗i,sFi∆t) is utilized as
the obstacle function.

F. Workloads Scheduling on Small Timescales
So far, we have discussed how to deploy service placement

and allocate resources on a large timescale. The next mat-
ter that needs to be determined is the workload scheduling
problem for each time slot. The optimal service placement
decisions X ∗

frame and resource allocation Y∗
frame will be

given at the start of every time frame f. Then the problem P1
will be simplified to the problem P4 at the start of every time
slot t. It can also be solved by sub-gradient method, which is
summarized in Algorithm 3.

The complexity of RMWS: In P3, y∗i,s can be computed
by the closed-form expressions, whose complexity can be
neglected. In P4, the complexity of the sub-gradient descent
algorithm mainly related to the number of iterations. Based
on the proof in [37], it has a polynomial time complexity of
O(1/ϵ2). Therefore, the overall complexity of Algorithm 3
and Algorithm 2 is O(1/ϵ2). The complexity of Algorithm
1 is highly correlated with the number of Gibbs sampling
iterations M and the complexity of Algorithm 2, which is
O(M/ϵ2).

Algorithm 3 Workloads scheduling on small timescales
Input:

X ∗
frame and Y∗

frame in the time frame f , service request
numbers nt

i,s in the time slot t.
Output:

The optimal workload scheduling Zn
slot in the time slot t.

1: Set service placement X ∗
frame and resource allocation

strategy Y∗
frame.

2: Initialize the workload scheduling Z0
slot.

3: Calculate f(Z0
slot) and g(0) according to Eq.(10) and

Eq.(16)
4: for each iteration n = 1,2,... do
5: Update the workload scheduling vector by Eq. (15)
6: Calculate f(Zn

slot) and g(n) according to Eq.(10) and
Eq.(16)

7: if |f(Zn
slot)− f(Zn−1

slot)| ≤ ϵ then
8: Return Zn

slot

9: end if
10: end for

V. PERFORMANCE EVALUATIONS

A. Experiment Setup

Parameter Setting: The default settings of parameters in
our simulations are collected in Table I. We note that the values
chosen for the parameters are practical and are widely used
in existing work [14], [26], [38] and the price of edge server
resource refers to Alibaba Cloud servers1.

TABLE I
SIMULATION SETUP AND SYSTEM PARAMETERS

Parameters Values

Number of edge servers, L 4
Number of services, S 10
Edge server storage resource, Mi [50,200]GB
Edge server computation resource, Fi [50,150] GHz
Service storage requirement, ms [10,40]GB
Service computation requirement, cs [0.1,0.5] GHz
Edge server storage resource price, Pm

i [10, 40] CNY/hour
Edge server computation resource price, P f

i [10,50] CNY/hour
zipf distribution coefficient, e 0.6
budget coefficient, µ 0.7
Smooth parameter, ω 0.001

Service Request Demand: We assume that the service
request demands of each edge server follow Zipf distribution,
witch are consistent with the other researches [14]. The Zipf’s
law shows that the probability for a single request to the type
s service is ps =

1
seH for all services, i.e. ps is the popularity

of service s, where H =
∑|S|

s=1
1
se , 1 ≤ s ≤ |S| and these

services are ranked in their popularity.
Task Arrival Pattern: Mobile edge computing has not been

widely deployed in practice, thus we can not trace the mobile
task arrivals at edge server precisely. In our work, we use

1https://www.aliyun.com/price

the mathematical traffic pattern to simulate the time-varying
property of mobile task arrivals at edge servers [17]. Assume
that each time frame contains 30 time slots and per slot length
is one minute. In each time frame, the number of task requests
at each edge server obeys a normal distribution with a mean
of 600 tasks/slot and a variance of 20 tasks/slot.

B. Benchmark Algorithms

We evaluate the performance of our algorithm RMWS with
following state-of-the-art algorithms:

1) Cloud Processing Only (CPO): No services are placed
on the edge servers and all requested tasks are offloaded
to the cloud for processing.

2) Fixed Service Placement (FSP) Algorithm [39]: Ser-
vices placed on edge servers are fixed without service
placement optimization.

3) Non-cooperation Service Placement (NSP) Algo-
rithm [22]: Each edge server performs independent ser-
vice placement, with the workload either processed on
local edge server or offloading to the cloud server and
the edge-edge cooperation is disabled.

4) Popular Service Placement (PSP) Algorithm [40]:
Services are placed on edge servers according to pop-
ularity. Workload scheduling and computation resource
provisioning are jointly optimized.

5) Edge-Edge Cooperation Scheduling with Equal Re-
source Allocation (EERA) [41]: which disables edge-
cloud cooperation and resource allocation optimization.

6) Edge-Cloud and Edge-Edge Cooperation Schedul-
ing with Equal Resource Allocation (ECEERA) [38]:
which disables resource allocation optimization.

C. Simulation Results

1) Comparison under Different Budget Constraints. To
evaluate the impact of allocated budge, we enhance the budget
constraint for each edge server, raising it from 50% to 90% of
the total cost of computation and storage resources across all
edge servers. Meanwhile, the remaining parameter values are
kept constant. It can be seen from Figure 4, the response
latency of workloads shows a tendency to decrease with
the elevation of the service provider’s budget. The expanded
budget enhances the availability of resources on edge servers,
facilitating the deployment of services and processing of tasks.
Notably, the response time of the service remains unaffected
by the change in budget when employing the CPO approach,
as the workloads are processed in the cloud.

2) Comparison under Different Numbers of Service
Types. From the Figure 5, we can see that as the number
of service types increases, there is a gradual rise in the
average response time for each algorithm. This is primarily
due to the limited resources of the edge servers, which cannot
accommodate the growing number of services for placement.
Tasks associated with services that cannot be placed on the
edge servers are consequently offloaded to the cloud, thus
prolonging the task processing delay caused by edge-cloud
transmission. When the number of applications is 12, the

0.5 0.6 0.7 0.8 0.9
0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
es

po
ns

e
T

im
e

(s
)

Budget Constraints

 EERA
 ECEERA

 CPO
 PSP
 FSP
 NSP

RMWS

Fig. 4. Response time under different budget
constraints

8 9 10 11 12
0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
es

po
ns

e
T

im
e

(s
)

Numbers of Service Types

 EERA
 ECEERA
 RMWS
 CPO
 PSP
 FSP
 NSP

Fig. 5. Response time under different numbers
of service types

40% 60% 80% 100% 120% 140% 160%
0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
es

po
ns

e
T

im
e

(s
)

Storage Capacity of Edge Servers

 EERA
 ECEERA
 RMWS
 CPO
 PSP
 FSP
 NSP

Fig. 6. Response time under different storage
capacity of edge servers.

160%140%120%100%80%60%40%

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

R
es

po
ns

e
T

im
e

(s
)

 Computation Capacity of Edge Servers

AEER ACEERE
POC

SPP PSF
 NSP

RMWS

Fig. 7. Response time under different computa-
tion capacity of edge servers.

40% 60% 80% 100% 120% 140% 160%
0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
es

po
ns

e
T

im
e

(s
)

Service Storage Requirement

 EERA ECEERA
 RMWS CPO
 PSP FSP
 NSP

Fig. 8. Response time under different storage
requirement of services.

40% 60% 80% 100% 120% 140% 160%
0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
es

po
ns

e
T

im
e

(s
)

Service Computation Requirement

 EERA ECEERA
 RMWS CPO
 PSP FSP
 NSP

Fig. 9. Response time under different computa-
tion requirement of services.

RMWS reduces the response time by 10.7%-80.9% compared
to other algorithms. The main reason is that RWMS can
more effectively allocate resources on edge servers to various
services and coordinate response latency between edge servers
and cloud servers.

3) Comparison under Different Storage and Computa-
tion Capacity of Edge Servers. The capacity of computation
and storage resources in edge servers dictates the number and
distribution of services they can handle. In Figure 6 and Fig-
ure 7, It can be concluded that as the storage and computation
capacity of edge servers increase, the service response time
of each algorithm gradually decreases. Notably, the RMWS
consistently maintains lower response delays by effectively
balancing service popularity and resource availability within
the edge-cloud cooperative system. Moreover, in the absence
of coordination between edge and cloud, if edge servers have
limited computation capabilities, processing the entire work-
load on edge servers can result in response delays surpassing
those incurred by offloaded to cloud servers. Specifically,
when the computation resources of the edge server are set
to the default value of 40%, the average response latency
relationship of each algorithm is EERA > CPO > NSP, FSP,
PSP, ECEERA, RWMS. This indicates that in cases where
edge resources are insufficient, the edge-cloud collaboration
mechanism can effectively reduce task processing latency.
When the computation and storage resources of the edge server

are set to the default value of 160%, the performance of the
non-collaborative service placement algorithm NSP is only
better than CPO. This suggests that when edge resources are
sufficient, cooperation among edge servers can also effectively
reduce task processing time.

4) Comparison under Different Storage and Computa-
tion Requirement of Services. It can be seen from the Fig-
ure 8 and Figure 9, as the storage and computation demands
of services increase, the number of services that edge servers
can simultaneously deploy and tasks they can process both
decrease. This will lead to an increase in service response
time, but in such cases, RMWS consistently delivers optimal
performance. The RMWS demonstrates notable efficiency by
reducing service response latency by at least 10.6%, 11.9%,
and 14.5% compared to other algorithms when services require
60%, 100%, and 140% of the default storage resources,
respectively. Similarly, when services demand 60%, 100%,
and 140% of the default computation resources, our algorithm
achieves a reduction of at least 12.5%, 11.7%, and 7.2% in
response latency compared to other algorithms, respectively.
This indicates that the RMWS has more performance in
resource allocation and utilization.

5) Comparison under Different Service Popularity. To
validate the impact of service popularity on response time,
we ensure that the total number of workload requests remains
constant within each time frame, and adjust the popularity of

0 30 60 90 120 150 180 210 240 270 300
0.011

0.012

0.013

0.014

0.015

0.016
R

es
po

ns
e

T
im

e
(s

)

Time Slot No.

 RMWS EERA ECEERA PSP FSP

(a) The variations of Zipf distribution coefficients.

0 30 60 90 120 150 180
0.011

0.012

0.013

0.014

0.015

0.016

R
es

po
ns

e
T

im
e

(s
)

Time Slot No.

 RMWS EERA ECEERA PSP FSP

(b) The variations in the ranking of service popularity.

Fig. 10. Response time under different service popularity

services by modifying the coefficients of the Zipf distribution
and the ranking of service popularity. In Figure 10(a), the ex-
periment modifies the Zipf coefficient of service requests and
randomly generates the Zipf distribution coefficients within
10 time frames: [0.23, 0.3, 0.41, 0.42, 0.46, 0.54, 0.64, 0.67,
0.76, 0.89]. In Figure 10(b), the experiment modifies the
the ranking of service popularity and randomly generating 6
different rankings within 6 time frames. It can be observed
that without resource configuration optimization (EERA and
ECEERA), the response latency of tasks in each time slot
fluctuates significantly. Other algorithms that have undergone
resource configuration optimization can maintain a relatively
stable state. Additionally, service response latency is somewhat
affected by service popularity, but the RMWS algorithm
overall remains in a better state.

In conclusion, the RMWS can achieve better performance
based on dynamically changing workloads and resource re-
quirements in terms of different metrics.

VI. CONCLUSIONS

This paper introduces a cloud-assisted edge computing
framework focusing on service placement, resource manage-
ment, and workloads scheduling. Considering the complexity
of this problem and the distinct optimization cycles for dif-
ferent sub-problems, we propose a two-timescale optimization
algorithm to minimize workload response time. Extensive sim-
ulations demonstrate the effectiveness and advantages of our
algorithm in minimising the response delay. For future work,
we will investigate more complex scenarios, considering the
mobility of IoT devices in the workload scheduling process.

VII. ACKNOWLEDGMENTS

This work is supported by National Key R & D Program of
China (No. 2021YFB3300200), the National Natural Science
Foundation of China (No. 62072451, 62102408, 92267105),
Guangdong Basic and Applied Basic Research Founda-
tion (No. 2024A1515010251, 2023B1515130002), Guangdong
Special Support Plan (No. 2021TQ06X990), Shenzhen Basic
Research Program (No. JCYJ20220818101610023), Shenzhen
Industrial Application Projects of undertaking the National key
R & D Program of China (No. CJGJZD20210408091600002).

APPENDIX

A. Proof of Theorem 1

Let A = {a1, a2, ..., aM} be the service placement decision
space of all edge servers. At each iteration round, we randomly
choose the edge server k and its service placement decision
from A. Following the iterations of algorithm, the service
placement decisions X evolves as a L-dimension Markov
chain in which the ith dimension corresponds to the ith edge
server service placement decision. For the convenience of
proving, let L = 2, so it is a two-dimensional Markov chain
and denoted as Sx1,x2 . In each iteration, we change the service
placement decision to Sx∗

1 ,x2 with the following probability:

Pr(Sx∗
1 ,x2 |Sx1,x2) =

1

2M
× 1

1 + e
(ϑ(Sx∗

1 ,x2
)−ϑ(Sx1,x2))/ω

(17)

=
1

2M
× e

−ϑ(Sx∗
1 ,x2

)/ω

e
−ϑ(Sx∗

1 ,x2
)/ω

+ e−ϑ(Sx1,x2
)/ω

.

Let the stationary distribution be Pr∗, according to the
detailed balance condition,

Pr ∗(Sa1,a1
) Pr(Sa1,am

|Sa1,a1
) (18)

= Pr ∗(Sa1,am
) Pr(Sa1,a1

|Sa1,am
).

it can be derived that:

Pr ∗(Sa1,a1
)× 1

2M
× e−ϑ(Sa1,am)/ω

e−ϑ(Sa1,am)/ω + e−ϑ(Sa1,a1)/ω
(19)

= Pr ∗(Sa1,am
)× 1

2M
× e−ϑ(Sa1,a1

)/ω

e−ϑ(Sa1,am)/ω + e−ϑ(Sa1,a1)/ω
.

By observation the above equation, we can find Eq. (19)
is symmetric and can be balanced if the stationary joint
distribution Pr ∗(S̃) = γe−ϑ(S̃)/ω for arbitrary state S̃ in the
strategy space Ω, where γ is a constant. Therefore, based on
the probability conservation law, the stationary distribution can
be expressed as

Pr ∗(Sx1,x2
) =

e−ϑ(Sx1,x2
)/ω∑

Sx̃1,x̃2
∈Ω

e−ϑ(Sx̃1,x̃2)/ω
. (20)

Let Sx∗
1 ,x

∗
2

be the globally optimal service placement de-
cisions, thus ϑ(Sx∗

1 ,x
∗
2
) ≤ ϑ(Sx̃1,x̃2) has always been es-

tablished for any Sx̃1,x̃2
∈ Ω. From Eq. (20), we observe

that Pr ∗(Sx∗
1 ,x

∗
2
) will increase with the decrease of ω and

limω→0 Pr
∗(Sx∗

1 ,x
∗
2
) = 1, which proves that the gibbs sample

algorithm will converges to the optimal state in probability.
The above analysis can be directly extended to the L-

dimensional Markov chain.

B. Proof of Theorem 2

According to the convex optimization theory, If the Hessian
is a positive definite matrix, the optimization objective function
is a convex function [37]. By analysis, the optimization
objective of problem P2 can be transformed into:

f(X ∗,Y,Z) =

S∑
s=1

[
(1−

L∑
i=1

zi,s)nsϕc,s

]
+ (21)

L∑
i=1

∑
s∈θi

[
zi,sns

yi,sFi/cs − zi,sns/∆t
+max{zi,sns − ni,s, 0} · ϕs

]
.

The Hessian of f(yi,s, zi,s) is

H =

[
H11 H12

H21 H22

]
=

∂2f(yi,s, zi,s)

∂2yi,s

∂2f(yi,s, zi,s)

∂yi,s∂zi,s

∂2f(yi,s, zi,s)

∂zi,s∂yi,s

∂2f(yi,s, zi,s)

∂2zi,s

 ,

(22)

△1 = H11 =
2zi,snscsF

2
i ∆t3

(yi,sFi∆t− zi,snscs)3
> 0, (23)

△2 =
−n2

sc
2
sF

2
i ∆t4(yi,sFi∆t− zi,snscs)

2

(yi,sFi∆t− zi,snscs)6
< 0. (24)

where △1 = H11 and △2 = H11H22 −H12H21.
We can prove that the Hessian in Eq.(22) is indefinite by

proving that the leading principal minors of H have both
positive and negative,which are given by Eq. (23) and Eq.
(24). Therefore, the problem P2 is a non-convex optimization
problem.

C. Proof of Theorem 3

The optimization objective of problem P3 can be de-
noted as f(X ∗,Z∗,Y), then the second-order derivative of
f(X ∗,Z∗,Y) is:

∂2f(X ∗,Z∗,Y)

∂yi,s∂yj,s
=

2z∗

i,snscsF
2
i ∆t3

(yi,sFi∆t−z∗
i,snscs)3

≥ 0 if i = j

0 else
.

(25)

The parameters in Eq.(25) are all positive, so the Hessian
matrix of the objective function f(X ∗,Z∗,Y) is positive defi-
nite. And problem P3 can be defined as a convex optimization
problem since its constraints are linear.

The optimization objective of problem P4 can be de-
noted as f(X ∗,Y∗,Z), then the second-order derivative of
f(X ∗,Y∗,Z) is:

∂2f(X ∗,Y∗,Z)

∂zi,s∂zj,s
=

2y∗

i,sn
2
sc

2
sFi∆t2

(y∗
i,sFi∆t−zi,snscs)3

≥ 0 if i = j

0 else
.

(26)

The parameters in Eq.(26) are all positive, so the Hessian
matrix of the objective function f(X ∗,Y∗,Z) is positive defi-
nite. And problem P4 can be defined as a convex optimization
problem since its constraints are linear.

D. Proof of Theorem 4

By using the KKT conditions, we can obtain that:

∂L(f(Y), λ, µ)

∂yi,s
= 0

λi(
∑
s∈θi

yi,s − 1) = 0

µi

[∑
s∈θi

(
ms

Mi
Pm
i + yi,sP

f
i

)
− P bud

i

]
= 0

λi, µi ≥ 0

(27)

Based on the above formulas, we can derive that:
y∗i,s =

√
z∗
i,snscsFi∆t2

λi+µiP
f
i

+ z∗i,snscs

Fi∆t∑
s∈θi

yi,s ≤ 1 and
∑
s∈θi

yi,s ≤ Γi

(28)

where Γi =

(
pbudi −

∑
s∈θi

ms

Mi
Pm
i

)
/P f

i .

Case 1: if Γi < 1, it means that
∑

s∈θi
yi,s ≤ Γi and

λi = 0.

µi =
(
∑

s∈θi

√
z∗i,snscsFi∆t2)2

(ΓiFi∆t−
∑

s∈θi
z∗i,snscs)2P

f
i

, (29)

y∗i,s =

√
z∗i,snscs(ΓiFi∆t−

∑
s∈θi

z∗i,snscs)∑
s∈θi

√
z∗i,snscsFi∆t

+
z∗i,snscs

Fi∆t
.

(30)

Case 2: if Γi ≥ 1, it means that
∑

s∈θi
yi,s ≤ 1 and µi = 0.

λi =

(∑
s∈θi

√
z∗i,snscsFi∆t2

Fi∆t−
∑

s∈θi
z∗i,snscs

)2

, (31)

y∗i,s =

√
z∗i,snscs(Fi∆t−

∑
s∈θi

z∗i,snscs)∑
s∈θi

√
z∗i,snscsFi∆t

+
z∗i,snscs

Fi∆t
.

(32)

This ends the proof.

REFERENCES

[1] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. H. Robinson,
“Enhanced resource allocation in mobile edge computing using rein-
forcement learning based moaco algorithm for iiot,” Computer Commu-
nications, vol. 151, pp. 355–364, 2020.

[2] S. C. Mukhopadhyay, S. K. S. Tyagi, N. K. Suryadevara, V. Piuri,
F. Scotti, and S. Zeadally, “Artificial intelligence-based sensors for next
generation iot applications: A review,” IEEE Sensors Journal, vol. 21,
no. 22, pp. 24 920–24 932, 2021.

[3] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communi-
cations for ubiquitous iot: Applications, trends, and challenges,” IEEE
Network, vol. 35, no. 5, pp. 158–167, 2021.

[4] F. Siqueira and J. G. Davis, “Service computing for industry 4.0: State of
the art, challenges, and research opportunities,” ACM Computing Surveys
(CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[5] X. Xu, Q. Huang, X. Yin, M. Abbasi, M. R. Khosravi, and L. Qi,
“Intelligent offloading for collaborative smart city services in edge
computing,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7919–
7927, 2020.

[6] M. Goudarzi, M. Palaniswami, and R. Buyya, “Scheduling iot applica-
tions in edge and fog computing environments: a taxonomy and future
directions,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–41, 2022.

[7] T. Wang, Y. Liang, X. Shen, X. Zheng, A. Mahmood, and Q. Z. Sheng,
“Edge computing and sensor-cloud: Overview, solutions, and directions,”
ACM Computing Surveys, vol. 55, no. 13s, pp. 1–37, 2023.

[8] A. Brecko and et el., “Federated learning for edge computing: A survey,”
Applied Sciences, vol. 12, no. 18, p. 9124, 2022.

[9] J. Du, M. Xu, S. S. Gill, and H. Wu, “Computation energy efficiency
maximization for intelligent reflective surface-aided wireless powered
mobile edge computing,” IEEE Transactions on Sustainable Computing,
2023.

[10] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2020.

[11] T. Long, Y. Ma, Y. Xia, X. Xiao, Q. Peng, and J. Zhao, “A mobility-
aware and fault-tolerant service offloading method in mobile edge
computing,” in 2022 IEEE International Conference on Web Services
(ICWS). IEEE, 2022, pp. 67–72.

[12] K. Ray, “Adaptive service placement for multi-access edge computing:
A formal methods approach,” in 2023 IEEE International Conference
on Web Services (ICWS). IEEE, 2023, pp. 14–20.

[13] M. Xu, Q. Zhou, H. Wu, W. Lin, K. Ye, and C. Xu, “Pdma: Probabilistic
service migration approach for delay-aware and mobility-aware mobile
edge computing,” Software: Practice and Experience, vol. 52, no. 2, pp.
394–414, 2022.

[14] R. Li, Z. Zhou, X. Zhang, and X. Chen, “Joint application placement
and request routing optimization for dynamic edge computing service
management,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 12, pp. 4581–4596, 2022.

[15] S. Smolka, L. Wißenberg, and Z. Á. Mann, “Edgedecap: An auction-
based decentralized algorithm for optimizing application placement in
edge computing,” Journal of Parallel and Distributed Computing, vol.
175, pp. 22–36, 2023.

[16] J. Plachy, Z. Becvar, E. C. Strinati, and N. di Pietro, “Dynamic
allocation of computing and communication resources in multi-access
edge computing for mobile users,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 2089–2106, 2021.

[17] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang, “Dynamic
task scheduling in cloud-assisted mobile edge computing,” IEEE Trans-
actions on Mobile Computing, 2021.

[18] H. Zhu, X. Li, L. Chen, and R. Ruiz, “Smart offloading computation-
intensive & delay-intensive tasks of real-time workflows in mobile edge
computing,” in 2023 IEEE International Conference on Web Services
(ICWS). IEEE, 2023, pp. 695–697.

[19] R. Zhang, R. Zhou, Y. Wang, H. Tan, and K. He, “Incentive mechanisms
for online task offloading with privacy-preserving in uav-assisted mobile
edge computing,” IEEE/ACM Transactions on Networking, 2024.

[20] V. Farhadi, F. Mehmeti, T. He, T. F. La Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and request
scheduling for data-intensive applications in edge clouds,” IEEE/ACM
Transactions on Networking, vol. 29, no. 2, pp. 779–792, 2021.

[21] W. Fan, L. Zhao, X. Liu, Y. Su, S. Li, F. Wu, and Y. Liu, “Collaborative
service placement, task scheduling, and resource allocation for task
offloading with edge-cloud cooperation,” IEEE Transactions on Mobile
Computing, 2022.

[22] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, and Y. Yang, “Deep reinforcement
learning based approach for online service placement and computation
resource allocation in edge computing,” IEEE Transactions on Mobile
Computing, 2022.

[23] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[24] W. Chu, P. Yu, Z. Yu, J. C. Lui, and Y. Lin, “Online optimal service
selection, resource allocation and task offloading for multi-access edge
computing: A utility-based approach,” IEEE Transactions on Mobile
Computing, 2022.

[25] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[26] J. Huang, A. Zhou, and S. Wang, “Price-aware service deployment in
hierarchical mobile edge computing,” IEEE Internet of Things Journal,
2021.

[27] Y. Hao, M. Chen, H. Gharavi, Y. Zhang, and K. Hwang, “Deep rein-
forcement learning for edge service placement in softwarized industrial
cyber-physical system,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 8, pp. 5552–5561, 2020.

[28] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 10–18.

[29] Y. Li, W. Dai, X. Gan, H. Jin, L. Fu, H. Ma, and X. Wang, “Cooperative
service placement and scheduling in edge clouds: A deadline-driven
approach,” IEEE Transactions on Mobile Computing, vol. 21, no. 10,
pp. 3519–3535, 2021.

[30] X. Wei, A. M. Rahman, D. Cheng, and Y. Wang, “Joint optimization
across timescales: Resource placement and task dispatching in edge
clouds,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp.
730–744, 2021.

[31] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 10–18.

[32] X. Jie, T. Liu, H. Gao, C. Cao, P. Wang, and W. Tong, “A dqn-based
approach for online service placement in mobile edge computing,” in
Collaborative Computing: Networking, Applications and Worksharing:
16th EAI International Conference, CollaborateCom 2020, Shanghai,
China, October 16–18, 2020, Proceedings, Part II 16. Springer, 2021,
pp. 169–183.

[33] A. Zhou, S. Li, and S. Wang, “Task offloading and resource allocation for
container-enabled mobile edge computing,” in 2021 IEEE International
Conference on Services Computing (SCC). IEEE, 2021, pp. 222–232.

[34] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte
Carlo in practice. CRC press, 1995.

[35] G. Gordon and R. Tibshirani, “Karush-kuhn-tucker conditions,” Opti-
mization, vol. 10, no. 725/36, p. 725, 2012.

[36] R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM review,
vol. 35, no. 2, pp. 183–238, 1993.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Convex Opti-
mization, 2004.

[38] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2076–2085.

[39] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A novel
framework for mobile-edge computing by optimizing task offloading,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13 065–13 076, 2021.

[40] C. Li, Q. Zhang, C. Huang, and Y. Luo, “Optimal service selection and
placement based on popularity and server load in multi-access edge
computing,” Journal of Network and Systems Management, vol. 31,
no. 1, p. 15, 2023.

[41] H. Ma, Z. Zhou, and X. Chen, “Leveraging the power of prediction:
Predictive service placement for latency-sensitive mobile edge comput-
ing,” IEEE Transactions on Wireless Communications, vol. 19, no. 10,
pp. 6454–6468, 2020.

