
MSARS: A Meta-Learning and Reinforcement Learning Framework for SLO
Resource Allocation and Adaptive Scaling for Microservices

Kan Hu1,2, Linfeng Wen1,2, Minxian Xu1B, Kejiang Ye1
1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

2. University of Chinese Academy of Sciences, China
{k.hu, lf.wen, mx.xu, kj.ye}@siat.ac.cn

Abstract—Service Level Objectives (SLOs) aim to set threshold
for service time in cloud services to ensure acceptable qual-
ity of service (QoS) and user satisfaction. Currently, many
studies consider SLOs as a system resource to be allocated,
ensuring QoS meets the SLOs. Existing microservice auto-
scaling frameworks that rely on SLO resources often utilize
complex and computationally intensive models, requiring sig-
nificant time and resources to determine appropriate resource
allocation. This paper aims to rapidly allocate SLO resources
and minimize resource costs while ensuring application QoS
meets the SLO requirements in a dynamically changing mi-
croservice environment. We propose MSARS, a framework
that leverages meta-learning to quickly derive SLO resource
allocation strategies and employs reinforcement learning for
adaptive scaling of microservice resources. It features three
innovative components: First, MSARS uses graph convolu-
tional networks to predict the most suitable SLO resource al-
location scheme for the current environment. Second, MSARS
utilizes meta-learning to enable the graph neural network to
quickly adapt to environmental changes ensuring adaptability
in highly dynamic microservice environments. Third, MSARS
generates auto-scaling policies for each microservice based on
an improved Twin Delayed Deep Deterministic Policy Gradient
(TD3) model. The adaptive auto-scaling policy integrates the
SLO resource allocation strategy into the scheduling algorithm
to satisfy SLOs. Finally, we compare MSARS with state-of-
the-art resource auto-scaling algorithms that utilize neural
networks and reinforcement learning, MSARS takes 40% less
time to adapt to new environments, 38% reduction of SLO
violations, and 8% less resources cost.

Index Terms—Microservices, SLO allocation, Meta learning,
Reinforcement learning, Resource auto-scaling

1. Introduction
Microservices architecture is currently the most popular

paradigm in cloud computing [1], widely adopted by leading
cloud companies such as Google [2], Amazon [3], and
Alibaba [4]. This architecture decouples large monolithic ap-
plications into multiple independent services, each responsi-
ble for a specific business function. These microservices can
be developed, tested, deployed, and scaled independently,
allowing for greater flexibility and efficiency in managing

cloud applications. However, the dynamic and distributed
nature of microservices presents significant challenges for
efficient resource scheduling [5]. Ensuring that these ap-
plications perform optimally under varying conditions is
critical for maintaining service quality [6].

SLOs are goals that specify the desired performance for
a service. By using SLOs as a reference for resource allo-
cation, cloud systems can align their resource management
strategies with the expectations of users, thereby prioritizing
user satisfaction [7]. SLO-based resource allocation ensures
that system resources are distributed in a way that meets pre-
defined performance criteria, leading to improved resource
utilization, better handling of dynamic workloads, and an
overall enhanced user experience.

In microservices-based applications, each microservice
is independently deployed and automatically scaled. The
latency SLOs are defined for end-to-end services, as end-
to-end response time determines user experience. Conse-
quently, in a microservices environment, it is unclear which
microservices need to be scaled when end-to-end latency
SLO are violated or underutilized, and how to adjust the
scale of each microservice at minimal cost to meet the end-
to-end latency SLO [8].

Most large systems impose partial latency SLOs on indi-
vidual microservices along the complete microservice chain,
ensuring that if all partial latency SLOs are met, the end-
to-end SLO will also be satisfied [7]. Current research has
proposed some static end-to-end SLO resource allocation
methods, which use Load-Latency Profiles (LLP) graphs
depicting the relationship between the number of requests
to each microservice and their response time, and related
resource gradient descent calculations. These methods can
compute approximately optimal SLO resource allocations
based on the current environment, allowing each microser-
vice to be assigned the most appropriate partial SLO as a
standard for auto-scaling.

However, these methods heavily rely on a stable envi-
ronment, consistent applications, and fixed-size container in-
stances [9]. When microservice applications undergo change
(such as upgrade) or the size of microservice container
instance change, the LLP graphs for these microservices
also change. This necessitates updating the LLP for each
microservice and obtaining a new partial SLO allocation
scheme. Moreover, when tail latency is used as the SLO met-

(a) (b) (c) (d)

Figure 1: (a) Capacity of instance to handle concurrent requests with different sizes; (b) LLP for different instance sizes
and under different loads; (c) LLP for different size instances; (d) LLP for different versions.

ric, the non-additive nature of tail latency requires significant
computational time to iteratively calculate appropriate par-
tial SLO resource allocations. To address these challenges,
and adapt to the high uncertainty of SLO resource allocation
in dynamic environments, we apply meta-learning to rapidly
adjust to these changes.

In this paper, we propose SLO-aware resource allocation
model that can rapidly adapt to changes in microservices
applications and system environments. We also design a
reinforcement learning (RL)-based auto-scaling framework
to manage resource scaling and ensure service quality within
the defined SLOs. The main contributions are as follows:

• We analyze the impact of various factors on the
load characteristics of microservices applications
and their effect on SLO resource allocation.

• We employ a meta-learning model to train SLO
resource allocation results for different LLP graphs,
various microservice chain structures, and different
system resource conditions. This approach allows
for the rapid generation of highly uncertain SLO re-
source allocation schemes, providing optimal scaling
thresholds for microservices.

• We design a RL-based auto-scaling framework that
continuously adjusts resource scaling thresholds.
This framework leverages the dynamically updated
local SLOs from the meta-learning model to ensure
optimal performance and resource utilization.

2. Background and Motivation
When using SLO metrics as a system indicator for

resource allocation, if the average response time of requests
is used to measure SLO resources, the additivity of average
response time allows for easy and accurate allocation of
SLO resources to each microservice component in the call-
ing graph. However, average response time cannot represent
the overall quality of user service. Therefore, the 99th
percentile response time, also called tail latency, is usually
used as the SLO resource measure. When using this metric,
as tail latency is not an additive metric, it is difficult to
accurately allocate the SLO resources to each microservice
component. Parslo [7] attempts to use an iterative testing
model to achieve a near-optimal SLO resource allocation
plan. It starts with the current tail latency SLO value as

the initial allocation of resources, and uses the gradient
descent method to derive SLO resource allocation plan. This
is followed by the utilization of its designed offline training
and online analysis model to continuously adjust the initial
resource allocation, ensuring that the actual link test tail la-
tency equals the tail latency SLO value, thereby obtaining a
near-optimal SLO resource allocation plan. However, Parslo
requires a significant amount of computation and testing
time initially to obtain this allocation plan. Furthermore,
this method relies on a static and stable system environment.
Once the LLP graph of a microservice changes, it will affect
the SLO resource allocation results for the entire chains.
Many factors affect the LLP graph, including the size of mi-
croservice application instances, functional attributes of the
applications, and the upgrades and assembly of microservice
applications. Therefore, we specifically studied the impact
of different conditions on the LLP graph.

2.1. Impact of the Instance Size of Microservices

The capacity of microservice instances to handle con-
current requests is closely related to their size (allocated
resources) [10]. Generally, larger instances can handle more
concurrent requests, as shown in Figure 1a, containers of
different sizes can handle different maximum numbers of
concurrent requests under the same SLO. But there are al-
ternative microserices whose ability to handle concurrent re-
quests does not regularly increase with the size of instances,
but instead exists in an irregular manner, as shown in Figure
1c. Therefore, the LLP graphs of microservice container
instances of different sizes also have significant differences,
as shown in Figures 1b. Different LLP graphs will lead to
markedly different SLO resource allocation results. If we
aim to finely control the resources of microservice instances
through vertical scaling, this variability can have disastrous
effects on our SLO allocation outcomes.

In previous research on SLO resource allocation, to
maintain a static LLP graph for microservices and ensure a
fixed SLO allocation, each microservice container instance
was set to a fixed size, completely abandoning vertical
scaling. This method scales microservice resources from
a macro perspective, leading to low resource utilization
efficiency when handling low traffic loads.

2.2. Impact of the microservice updates
Due to the inherent characteristics of microservices,

such as containerization, the implementation of version up-
grades has become a regular and frequent practice, aimed at
meeting ever-evolving business requirements. Microservice
version upgrades typically have two notable characteristics.
First, these upgrades are frequent and irregular, filled with
randomness, often accompanying the introduction of new
business requirements, features, or bug fixes. Second, the
impact of these upgrades on microservice performance pat-
terns is significantly uncertain. Some upgrades can dramat-
ically increase or decrease the microservice’s concurrent
request handling capacity, sometimes by more than 100%,
leading to substantial changes in the LLP graph. This could
make the LLP steeper, allowing the microservice to handle
more requests under the same SLO, or it could make the
LLP flatter, we have a test as shown in Figure 1d.

There are many scenarios for microservice version up-
grades, which can be broadly categorized into four types:
optimizing application performance, fixing bugs, adding new
features, and adding new functionalities. Interestingly, the
impact of these four types of upgrades on the microservice
LLP is inconsistent and highly dependent on the quality of
the underlying running code logic during the upgrade. How-
ever, for microservice managers, the operational logic within
the container is entirely transparent, making it impossible to
estimate the impact of the next version upgrade on the LLP
or its effect on SLO resource allocation.

However, upgrades in microservice applications are fre-
quent and irregular. Previous methods required a static en-
vironment and continuous feedback testing to obtain the op-
timal SLO resource allocation scheme, which is impractical
for realistic production. Therefore, a method that can quickly
adapt to these unpredictable version updates is required.

2.3. Meta-learning and Reinforcement Learning
Meta-learning [11], known as “learning to learn,” is a

subfield of machine learning focused on developing algo-
rithms that can quickly adapt to new tasks by leveraging
prior experience from related tasks. In the realm of microser-
vices resource scheduling, meta-learning can facilitate rapid
adaptation to new application characteristics or workload
patterns. This capability is crucial for maintaining optimal
performance in environments where the operational context
changes frequently. By leveraging meta-learning [12], sys-
tems can generalize from past experiences to make informed
decisions about resource allocation, even when faced with
novel scenarios.

To ensure that microservices applications can automat-
ically scale while maintaining service quality during op-
eration, we integrated and improved our previous work
on a RL-based autoscaler [13]. This enhanced autoscaler
can accept partial SLOs obtained through meta-learning as
thresholds for horizontal scaling. It also returns the results
of vertical scaling to the meta-learning algorithm, which
then recalculates suitable partial SLO values for the current
environment and container instance sizes.

Algorithm 1: MSARS: Workflow.
Result: Ensure QoS within SLO constraints and

minimise resource consumption
1 Initialize instance size Si, chains structure L and

node load-latency-profile parameters p1, p2
2 Initialize task of Meta Learner Ti
3 Initialize GCN model parameter set θ by Meta

Learner
4 while Service monitor executing do
5 Meta ← Edge:A, Node:X , Global:g
6 Workload Forecaster ← Current load: CL
7 RL agent ← Future load: FL, State: s, SLO:

SLOpartial
8 RL agent generate Scaling decision
9 Scaling execution

10 if Execute vertical scaling then
11 Meta ← instance size c
12 Meta ← Edge:A, Node:X , Global:g
13 RL agent ← SLO: SLOpartial
14 end
15 end

Figure 2: Workflow of MSARS.

3. MSARS Workflow Design
To address the issues of rapid SLO resource allocation,

ensuring user service quality, and automatically managing
system resources in a dynamic microservice-based environ-
ment, we design an auto-scaling management framework
for microservices, MSARS, based on meta-learning and
supporting RL agents. MSARS quickly analyzes and derives
new SLO resource allocation plans based on changes in the
LLP graph of microservice applications. When new appli-
cations or LLP graphs appear in the system environment,
MSARS can quickly adapt and learn from these changes,
ensuring that it always provides the most resource-efficient
SLO resource allocation plan. Figure 2 provides an overview
of MSARS and the workflow. The overall workflow of
MSARS is shown in Algorithm 1.

3.1. Service Monitor
The Service Monitor is the top-level perception com-

ponent in the MSARS architecture, used to monitor the
entire cloud service cluster. It collects real-time metrics of
all services, including current workload status, microservice
chain structure, each service’s LLP graph, request response

times, instance sizes and numbers, and CPU utilization.
The Service Monitor periodically checks the LLP graph of
microservices. When changes in the LLP graph occur, it
sends the new changes combined with the chain structure
to Meta Allocator for reallocation of SLO resources. It
monitors the current workload status and sends it to the
workload forecaster to predict the next stage of workload.
It also monitors request response times, instance sizes and
numbers, and CPU utilization, sending these as State in
Algorithm 1 to the RL Controller.

3.2. Meta Allocator
To quickly obtain an accurate near-optimal SLO resource

allocation plan, we design a Graph Convolutional Network
(GCN) structure to analyze the relationships between chain
structure, LLP graph, and SLO resource allocation. Due to
the irregular changes in LLP graphs and the rich diversity
of chain structures of microservices, accurately achieving
SLO allocation with the GCN model in new scenarios is
challenging in practice. Therefore, we utilize a meta-learner
to address this challenge. The meta-learner can quickly
adapt to environmental changes with small sample training.
When significant changes occur in the system environment,
the meta-learner can detect this shift and generate new graph
neural network parameters to adapt to these changes. Meta
Allocator is the core component of MSARS, ensuring that
the entire architecture quickly adapts to unfamiliar environ-
ments and generates accurate SLO resource allocation.

3.3. Workload Forecaster
This module receives the current workload status from

the Service Monitor and uses a gated recurrent unit model to
predict the workload for the next time segment. Its output is
sent to the RL controller as the State in Algorithm 1, guiding
the RL Controller’s next Action in Algorithm 1. This module
leverages our previous work, the esDNN model [14], a deep
learning network based on supervised learning. This model
is lightweight and accurately predictive, providing reliable
workload predictions for our framework.

3.4. RL Controller
In this module, a RL model is adopted to generate auto-

scaling policies. This model is based on the TD3 model [15],
makes decisions by receiving monitored request response
times, instance sizes and numbers, CPU utilization from
the Service Monitor, and the next time slot’s workload
prediction from the Workload Forecaster. Meanwhile, Meta
Allocator provides the generated SLO resource allocation
plan to the controller, serving not only as an input State but
also as a critical factor in its auto-scaling decisions.

4. Framework of MSARS
In this section, we will detail the functioning of our core

modules in MSARS framework, as shown in Figure 3.

4.1. Meta Allocator
Meta Allocator is responsible for generating SLO re-

source allocation strategies. To accurately capture the im-
pact of microservice chain structure and LLP graph on

SLO resource allocation, we develop a GCN model. This
model effectively captures the relationships between nodes
and edges by defining convolution operations on graph-
structured data. Additionally, to adapt to the complex and
dynamic chain structures of microservice applications, the
varying LLP graph characteristics, and the different SLO
constraints of different applications, we designed a Meta
Learner. Meta Learner enables the GCN model to quickly
adapt to new environments, ensuring the effectiveness of the
SLO resource allocation strategy.

4.1.1. GCN Model
The goal of the GCN model is to generate accurate and

effective SLO resource allocation plans based on end-to-end
SLO resource constraints combined with the microservice
chain structure and the nodes’ LLP graphs. We decompose
the chain structure of microservices into a directed acyclic
graph with a single end-to-end SLO and input it into the
model as an Edge Index in the form of an adjacency matrix
A ∈ RN×N . The LLP of each microservice component
node is input into the model as a Node feature in the form
of a node feature matrix X ∈ RN×D, where N denotes
the number of nodes and D denotes the dimension of node
features. The end-to-end SLO constraint is input as a Global
feature in the form of a feature vector g with dimensions
1× F , where F indicates the dimension of global feature.

To ensure that nodes retain their feature information
during subsequent convolution operations, we first add self-
loops in the adjacency matrix A, resulting in Ã = A + I ,
where I is the identity matrix. We then compute the degree
matrix D̃ii =

∑
j Ãij . To avoid changes in the scale of

feature vectors, we use symmetric normalization to process
the adjacency matrix, yielding Â = D̃− 1

2 ÃD̃− 1
2 .

In the GCN layer, we perform convolution calculations
on the node features and the normalized adjacency matrix.
The first convolution layer transforms the input node feature
matrix X into a hidden representation H(1),

H(1) = σ
(
ÂXW (0)

)
, (1)

H(2) = σ
(
ÂH(1)W (1)

)
, (2)

where W is the weight matrix of the layer and σ is the
activation function, which is ReLU in our model. The second
convolution layer transforms the first hidden representation
H(1) into a deeper hidden representation H(2).

The hidden representations can be abstracted as:

H
(l+1)
i = σ

 ∑
j∈N (i)∪{i}

1√
D̃iiD̃jj

H
(l)
j W (l)

 . (3)

We process the global feature vector g through a fully
connect layer to obtain the global feature embedding gemb:

gemb = σ (gWg) , (4)

where Wg is the weight matrix of the fully connected
layer. To better capture node information and global graph

Figure 3: MSARS framework that can quickly handle changes in microservices based on meta-learning and RL.

structure to analyse the relation between SLO and LLP pa-
rameters, we combine the node features and global features.
We merge the output H(2) of the second convolution layer
with the global feature embedding gemb. Since H(2) is a
node feature matrix with dimensions N ×D′, where D′ is
the dimension of hidden layer, we need to scale gemb to
match the shape of H(2):

gemb expanded = gemb.repeat(N, 1), (5)

and then concatenate the node features and global features
along the feature dimension:

Hcombined = [H(2) ∥ gembexpanded]. (6)

We input Hcombined into a fully connected layer to further
integrate the feature information within the model, produc-
ing the final output:

Ooutput = σ(HcombinedWout). (7)

We use pre-tested end-to-end SLO resource allocation
schemes for tail latency as the dataset for the entire model,
ensuring that the output of the GCN model closely approx-
imates the ideal local SLO resource allocation scheme.

GCN model usually has the problem of consuming a
lot of computational resources and time due to the increase
in the number of nodes, to address this, we decouple all
the microservice chains into simple end-to-end microservice
chains, and the GCN model only needs to compute the end-
to-end microservice chains that have been changed each
time, which has the benefit of a smaller number of nodes
and a simpler chain, and ensures the accuracy of the GCN
model prediction and the real-time.

4.1.2. Meta Learner
In the context of microservice architecture applications,

different microservice applications exhibit significant varia-
tions in microservice chains structures, microservice compo-
nent node LLPs, and end-to-end SLO constraints. Whenever
a new microservice application is encountered, or the LLP
graph of a microservice application undergoes significant
changes, the accuracy of the model’s predictions can be
greatly reduced. To enable our GCN model to quickly
adapt to new tasks, we design a Meta Learner. The aim
is to train the model to quickly adapt to new tasks by
training on multiple tasks, enabling the model to perform
well on new tasks after only a few gradient updates. Our
goal is to find an initial parameter set θ through the Meta
Learner component, where θ represents the relevant training
parameters in the GCN model, including the weights W l of
the GCN convolution layers, the weights W and biases b of
the fully connected layers. This ensures that when given a
new task, the model can quickly obtain the model parameters
θ′ adapted to that task through a few gradient updates [12].

Given the differences between microservice applications,
we use the microservice chain structure as the task division
standard. An end-to-end chain of a microservice application
is considered as a task division for training. By controlling
the microservice component nodes, we alter the LLP of
the microservice component nodes and different end-to-end
constraints to form the dataset D of a single task Ti. This
dataset is divided into the training set Dtrain

i and the test
set Dtest

i , with 70% of dataset used as the training set and
30% as the test set in this experiment. Different end-to-
end chains of different microservice applications constitute
different task datasets.

The entire meta-learning process can be divided into the
inner loop and the outer loop.

Inner Loop involves task-level training. For each task
Ti, we use the current model parameter set θ to perform
gradient descent, updating the task-specific parameters θ′i.
For each task Ti, we compute the gradient of the loss:
∇θLT itrain(θ), and use this gradient to update the model:

θ′i = θ − α∇θLT train
i (θ), (8)

where α denotes the learning rate.
Outer loop involves meta-level training, calculating the

loss on the test sets of all tasks, and optimizing the initial
parameters θ. First, we calculate the loss on the test set for
each task with the updated parameters θ′i:

LT itest(θ′i) = LT itest(θ − α∇θLT itrain(θ)). (9)

Then, we compute the meta-gradient for the entire
model: ∇θ

∑
T i∼p(T) LT itest(θ′i), and update the initial pa-

rameters accordingly:

θ ← θ − β∇θ

∑
T i∼p(T)

LT test
i (θ′i), (10)

where β denotes the learning rate.
Through this process, the GCN model obtains a set of

model parameters with good generalization capability. When
facing new tasks, the GCN model can quickly obtain the
model parameters θ′i adapted to those tasks through a few
gradient updates.

4.2. RL Controller
MSARS leverages RL to optimize resource manage-

ment strategies, aiming to achieve long-term rewards in
dynamic microservices environments. RL, through a tight
feedback loop, continuously explores the action space and
generates optimal strategies without relying on predefined
assumptions (such as heuristic rules). It can directly learn
from actual workloads and environments, understanding the
impact of overall resource scaling on microservice QoS.
MSARS employs the TD3 algorithm, a model-free, Actor-
Critic framework combining policy-based and value-based
RL frameworks (as shown in the Figure 3). The SLO
resource allocation plan generated by the Meta Allocator
is also included as part of the environment state to guide
the RL agent in decision-making.

Additionally, to make MSARS’s RL framework more
suitable for SLO-driven microservice application systems,
we include the real-time updated SLO resource allocation
strategy generated by the Meta Learner as a part of reward
for RL agent. This allows the RL agent to better identify
resource scaling thresholds when guiding resource scaling,
ensuring QoS while reducing resource consumption.

4.2.1. Reward Formulation
The goal of MSARS is to maximize system resource uti-

lization while ensuring SLOs. Therefore, our reward model
is based on response time and resource utilization, combined
with the SLO resource allocation plan generated by the Meta
Learner, resulting in the following reward function model:

Rqos(rt) =

{
e
−
(

rt−SLOpartial
SLOpartial

)2

, rt > SLOpartial

1 , rt ≤ SLOpartial,
(11)

where rt denotes the response time (the latency bwtween
a request being sent and the return of the result), which mea-
sures service quality. SLOpartial is the partial SLO resource
generated by the Meta Learner, representing the maximum
delay each microservice component can tolerate. When the
response time exceeds SLOpartial, it is likely to result in
SLO violation. Under normal system operation, a reward of
1 is assigned. However, if performance exceeds SLOpartial,
the reward is penalized and gradually approaches 0, thereby
discouraging overloading.

Rutil(vk) =

{∑K
k=1

∑R
r=1(V

pref
rk −vrk)

3

K + 1 , vrk ≤ V pref
rk∑K

k=1

∑R
r=1(vrk−V pref

rk)3

K + 1 , vrk > V pref
rk

(12)
Ideal resource utilization is also one of our goals, so

we have included system resource utilization in our reward
function, as shown in Eq. 2, where K and R represent the
kth physical machine and rth resource type residual on
the kth physical machine, respectively. V pref

rk denotes the
preferred utility for a specific resource type r on machine
k. Proximity to this ideal utility is rewarded, while under-
provisioning and wastage are discouraged.

r(st, at) =
Rqos(rt)

Rutil(vk)
. (13)

The final reward value (Eq.(13)) integrates both response
time and resource utilization, incentivizing higher Rqos val-
ues and lower Rutil values.

The pseudocode of the training algorithm is shown in
Algorithm 2, TD3 initiates by initializing actor and critic
networks and constructing a replay buffer for storing transi-
tion data (lines 1-3). TD3 training proceeds in episodes and
each episode consists of T time steps. An action with added
exploration noise ϵ is selected, and the corresponding time-
step information is stored in the replay buffer E, including
(s, a, r, s′, d), where d denotes the signal of end.

TD3 training is organized into episodes, each comprising
T time steps. Owing to its delayed update strategy, TD3
updates the policy network and target network parameters
only intermittently. At designated update intervals, TD3
samples a batch C of transitions (s, a, r, s′, d) from the
replay buffer E. The target policy network and target Q-
value network are then used to calculate the target action a′
(lines 11-14):

a′ ← µ′(s′) + clip(ϵ,−δ, δ). (14)

Then the target Q-value y is computed by follow function:

y ← r + γ(1− d) min
j=1,2

V ′
ϕj′

(s′, a′), (15)

where the Q-value is the smaller value from the twin critic
networks, effectively addressing the risk of Q-value over-
estimation. The loss is then calculated based on the Mean

Algorithm 2: MSARS: TD3 Algorithm.
Result: TD3 decisions

1 Initialize policy network µ and value networks Vϕ1
,

Vϕ2
with random parameters ψ, ϕ1, ϕ2

2 Initialize target networks µ′ and V ′ with weights
µ′ ← µ, V ′

ϕ1′
← Vϕ1

, V ′
ϕ2′
← Vϕ2

3 Initialize experience replay buffer E
4 for episode = 1 to N do
5 Receive initial state s
6 for t = 1 to T do
7 Select action a = µ(s) + ϵ and execute it
8 Observe new state s′, reward r and done

signal d to end episode
9 Store (s, a, r, s′, d) in E

10 if it’s time to update then
11 Sample a batch C of transitions

(s, a, r, s′, d) from E
12 a′ ← µ′(s′) + clip(ϵ,−δ, δ)
13 y ← r + γ(1− d)minj=1,2 V

′
ϕj′

(s′, a′)

14 Update Vϕj
by minimizing the loss:

L(ϕj) =
1
|C|

∑
(s,a,r,s′,d)∈C(Vϕj (s, a)− y)2

15 if t mod policy update == 0 then
16 Update µ by minimizing the loss:

L(ψ) = 1
|C|

∑
s∈C −Vϕ1

(s, µ(s))

17 Soft update the target networks (for
both policy and value):
ϕj′ ← τϕj′ + (1− τ)ϕj

18 end
19 end
20 s← s′

21 end
22 end

Squared Error (MSE), and update the Vϕj
by minimizing

the loss:

L(ϕj) =
1

|C|
∑

(s,a,r,s′,d)∈C

(Vϕj
(s, a)− y)2, (16)

where C is a random batch of convert records in re-
play buffer E. Due to the presence of the delayed up-
date strategy. The policy network is only updated when
the current time step meets the policy update condition t
mod policy update == 0 (line 15),

L(ψ) =
1

|C|
∑
s∈C

−Vϕ1
(s, µ(s)), (17)

and soft update the target networks (for both actor and critic)
at the same time:

ϕj′ ← τϕj′ + (1− τ)ϕj . (18)

5. Experimental Evaluations
In this section, we introduce our experimental settings

to evaluate our approach and discuss performance improve-

ment achieved by MSARS in terms of algorithm robustness
and SLO violation ratio under dynamic environment.

5.1. Experimental Setup
We evaluate MSARS using Sock-Shop1, an e-commerce

website microservice with 10 available versions and 5 main
chains. We randomly combined 10 different versions of
the microservice application, instances of each microservice
with varying sizes, and different end-to-end chains to form
the dataset for meta-learning and GCN model training. Each
specific version, end-to-end chain, and the SLO resource
allocation scheme generated by its microservice instances
of different sizes are treated as a separate task for the meta-
learner’s training. In this way, we obtained a dataset that
captures variations in SLO resource allocation schemes due
to multiple path structures, different versions, and changes
in instance sizes.

Kubernetes is used for underlying container orchestra-
tion. We deploy Kubernetes clusters on 10 machines com-
prising 3 master nodes and 7 worker nodes, the 3 master
nodes are equipped with 32 cores and 64GB memory each,
among the 7 worker nodes, 4 are configured with 32 cores
and 64GB memory, and the remaining worker nodes are
with 56 cores and 128GB memory, 104 cores and 256GB
memory, 64 cores and 64GB memory. The load generators
utilize Alibaba’s 2022 dataset2 to create workloads for sam-
ple collection and the creation of traffic surges, operating on
a separate machine from the Kubernetes clusters. To remove
the randomness, each experiment has been repeated three
times.

5.2. Robustness and Accuracy of Meta Allocator
In order to test the adaptability of our GCN model after

being trained by the Meta-Learner, we specifically chose
test data with chains structures significantly different from
the training data and with different LLP graph shapes. We
compared it with a convergent GCN model [16] trained on
the training set and a Feedforward Neural Network (FNN)
model [17], which is a type of artificial neural network
where connections between the nodes do not form a cycle,
FNN models can effectively capture non-linear relationships
in data and are widely used for tasks such as data classi-
fication, regression, and pattern recognition, as shown in
the Figure 4a. Compared to the other two baseline algo-
rithms, the GCN model from MSARS, which was trained
through Meta Learner, is better able to capture changes
in SLO resource allocation schemes due to environmental
variations, including changes in microservice instance sizes
and application version updates. Specifically, around time
slot 150 and 300 (each time slot represents 1 minute), we
made significant changes to the LLP parameters, causing
the predicted results to become distorted. This was partic-
ularly evident in the FNN model, which produced ineffec-
tive predictions for an extended period until retraining was
complete. In contrast, after feedback and rapid parameter

1. https://github.com/microservices-demo/microservices-demo
2. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-

microservices-v2022

(a) (b)

Figure 4: (a) Robustness Comparison of MSARS and baselines; (b) Comparison under varied chain structures.

updates by the meta-learner, MSARS required less time
(more than 40%) to retrain compared to the other models,
quickly generating SLO resource allocation strategies suited
to the new environment. Additionally, we observed that the
converged GCN model took longer to retrain parameters
to maintain the effectiveness of predictions after the model
became distorted.

Next, we explored whether MSARS could quickly adapt
to new microservice applications, unfamiliar chain struc-
tures, and similar LLP parameter combinations with min-
imal parameter training. As shown in the Figure 4b, during
testing, we found that the FNN model did not recognize
changes in microservice chain structures and continued to
generate SLO resource allocation schemes based on previ-
ously trained parameters. However, MSARS identified these
chain structure changes through Edge feature and made
corresponding adjustments. The converged GCN model also
recognized these changes but took longer to converge.

Finally, to test MSARS in extremely dynamic microser-
vice environments, we concatenated data from the dataset
to generate data with significant fluctuations. MSARS have
shown to learn this high volatility, resulting in highly accu-
rate predictions, as shown in the Figure 5.

Figure 5: Accurate predictions achieved by MSARS.

5.3. RL Decision with SLO Allocation Strategies
Incorporating the generated SLO resource allocation

strategy as part of the state and reward in RL helps the
agent better understand the conditions for resource scaling
in the current environment. The local SLO resource values

can guide the agent to determine the optimal horizontal scal-
ing thresholds when scaling resources, maximizing resource
savings while ensuring QoS meet SLO.

Figure 6: Cost and SLO violation comparison with TD3.

To this end, we compared the relative resource cost
(normalized with the maximum resource usage) and SLO
violations of MSARS with the TD3 algorithm [13], as shown
in the Figure 6. We can see that compared to TD3, the
inclusion of the SLO resource allocation policy makes the
resource scheduling of MSARS always make decisions in
a way that satisfies the SLO demand, resulting in an 38%
reduction in the SLO default rate of the whole system com-
pared to the TD3 default rate. Due the agent makes decisions
on vertical scaling by adjusting the size of microservice
instances, this results in MSARS regenerating the SLO
resource allocation strategy, which undoubtedly consumes
some resources. If container vertical scaling occurs very
frequently, it is undoubtedly a waste of resources. Therefore,
MSARS encourages more horizontal scaling of instances
and only opts for vertical scaling when fine-grained load
changes require maintaining high CPU utilization, so with
regard to savings in relative resource cost, the results were
not as high as initially expected, with 8% reduction 8% in
resource consumption compared to the TD3.

To summarize, our approach can quickly adapt to new
environments and generate new SLO resource allocation
schemes. The model’s convergence time is reduced by 40%
compared to baseline methods, since the Meta Learner op-
timises its initial parameters by training on multiple tasks, it
enables effective learning of new tasks from this set of initial

parameters with a small number of gradient updating steps
and a small amount of data, enabling effective adaptation to
new environments and applications. SLO-oriented resource
scaling effectively ensures the QoS of microservices, signif-
icantly reduces SLO violation rates, and decreases system
resource consumption.

6. Related Work
There is currently a large body of research on the

auto-scaling of microservice resources that focuses on SLO
to ensure QoS. This includes methods that allocate SLO
resources as system resources for scaling microservices to
maintain QoS, frameworks that use reinforcement learn-
ing to automatically scale resources to meet SLO, and
approaches using meta-learning to adapt to environmental
changes to ensure SLO compliance.

6.1. SLO allocation ensures SLO
Optimization-based SLO allocation aims to efficiently

distribute resources using mathematical or machine learning
techniques to achieve predefined performance targets while
minimizing costs and ensuring service quality, which treat
SLO allocation as an optimization problem.

Mirhosseini et al. [7] proposed Parslo, an optimization
method based on gradient descent, which minimizes de-
ployment costs while ensuring end-to-end SLO fulfillment.
However, its response time during transient traffic changes
is longer compared to some centralized machine learning
methods. For instance, Luo et al. [8] proposed Erms, an
efficient resource management system that enhances re-
source utilization and reduces SLO violation probabilities
through optimized scheduling strategies and resource alloca-
tion. Despite requiring complex dependency graph analysis
and multi-tenant priority scheduling, Erms achieves efficient
resource management and SLO assurance in multi-tenant
environments by leveraging tail latency piecewise linear
function modeling and priority scheduling strategies.

6.2. Reinforcement-Learning ensures SLO
RL-based SLO allocatiopn [9] enhances system adapt-

ability to uncertainty and change through trial-and-error
learning. These methods dynamically adjust resource al-
location based on real-time workload and environmental
changes, aiming to maximize system performance or meet
specific SLOs.

Zhang et al. [18] proposed A-SARSA, a predictive
container auto-scaling algorithm based on RL, combining
SARSA and ARIMA models to dynamically forecast work-
load, thereby accelerating the convergence speed of RL.
Despite potential initial performance challenges during cold
starts, experimental results demonstrate that the algorithm
significantly reduces SLO violation rates while excelling in
timeliness and accuracy of decision-making. Wang et al. [19]
introduced DeepScaling, employing deep learning and RL
methods to achieve more accurate load prediction and CPU
utilization estimation, thus improving resource efficiency
and reducing costs. However, this method requires substan-
tial computational resources for model training and infer-
ence, making it less suitable for small-scale systems. Some

works also consider anomaly detection, such as ADRL pro-
posed by Kardani-Moghaddam et al. [20], which integrates
anomaly detection with RL to optimize resource scaling
in cloud environments. However, due to the complexity of
resource adjustment based on multi-tiered decision-making
and environmental feedback, the model may experience
higher false positives during state transitions, potentially
affecting practical application effectiveness.

6.3. Meta-Learning ensures SLO
Meta learning learns how to rapidly adapt to new work-

load patterns and environmental changes [21], optimizing
auto-scaling strategies to ensure the achievement of SLOs,
which shows advantage in real-time resource allocation.

Qiu et al. [22] presented AWARE, an automated work-
load scaling framework based on meta-learning. Although
this framework is not sufficiently general-purpose and re-
quires specific design for particular workloads, as well
as time-consuming retraining for new changes, AWARE
achieves rapid adaptation to diverse workloads and en-
vironments through the integration of meta-learning and
RL. Qu et al. [23] designed DMRO, combining deep RL
with meta-learning to enhance adaptability and efficiency
in dynamic environments, demonstrating strong intelligent
decision-making capabilities and efficiency. However, its
computational complexity is high, and initial training may
require a longer time and more training steps to converge.
Xue et al. [24] developed a predictive auto-scaling method
based on meta reinforcement learning, significantly improv-
ing the accuracy and efficiency of cloud resource allocation
by integrating deep learning and neural process models.
However, it may not perform optimally in systems with
insufficient or low-quality data.

Compared to baselines, MSARS focuses on rapidly
adapting to the microservice environment to generate SLO
allocation strategies. By analyzing the three features men-
tioned above as inputs, it can accurately allocate end-to-
end SLO resources, saving significant iterative computation
time and resources. Unlike other SLO resource allocation
methods, MSARS extends them from static to dynamic en-
vironments, quickly responding to microservice application
updates, chain changes, and the addition of applications.
This results in a broader range of application scenarios and
more effective and stable allocation strategies. Additionally,
embedding the SLO allocation strategy into the decision-
making of RL agents makes resource scaling decisions more
aligned with the characteristics of microservice resource
scaling, optimizing system resource usage.

7. Conclusion and Future Work
Our work is dedicated to the rapid allocation of par-

tial SLO resources in dynamic environments, guiding the
resource scaling of microservice applications. We designed,
MSARS, a comprehensive resource management framework
based on meta-learning and reinforcement learning within
a microservice architecture. This framework can quickly
and accurately obtain near optimal SLO resource allocation

schemes, maximizing system resource savings while ensur-
ing QoS to meet SLO constraints. Moreover, we thoroughly
analyzed the factors affecting SLO resource allocation in
dynamic environments, and examined the changes in mi-
croservice instance LLP characteristics caused by instance
size variations and version updates, which contributes to
the design of the Meta Learner. This allows MSARS to
quickly obtain optimal SLO resource allocation strategies
in dynamic environments and integrate them into RL to
guide scaling decisions. Compared with baselines, MSARS
reduces the time required to adapt to new environments by
40%, lowers the SLO violation by 38%, and decreases re-
source consumption by 8%. In future work, we will focus on
optimizing the deep integration between SLO resources and
reinforcement learning agents, and extend the application
of meta-learning. This will enable the scaling framework to
effectively handle highly volatile and irregular burst loads,
thereby addressing issues related to SLO violations.

Acknowledgments
This work is supported by National Key R & D Program

of China (No. 2021YFB3300200), and the National Natural
Science Foundation of China (No. 62072451, 62102408,
92267105), Guangdong Basic and Applied Basic Research
Foundation (No. 2024A1515010251, 2023B1515130002).

References
[1] Deng Shuiguang, Zhao Hailiang, and Huang Binbin et al. Cloud-

native computing: A survey from the perspective of services. Pro-
ceedings of the IEEE, 112(1):12–46, 2024.

[2] Verma Abhishek, Pedrosa Luis, and Korupolu Madhukar et al. Large-
scale cluster management at google with borg. In Proceedings of the
Tenth European Conference on Computer Systems, EuroSys ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

[3] Narula Saakshi, Jain Arushi, and Prachi. Cloud computing security:
Amazon web service. In Fifth International Conference on Advanced
Computing & Communication Technologies, pages 501–505, 2015.

[4] Liu Qixiao and Yu Zhibin. The elasticity and plasticity in semi-
containerized co-locating cloud workload: a view from alibaba trace.
In Proceedings of the ACM Symposium on Cloud Computing, SoCC
’18, page 347–360, New York, NY, USA, 2018. Association for
Computing Machinery.

[5] Xiaokang Wang, Lei Ren, and Ruixue et al Yuan. Qtt-dlstm:
A cloud-edge-aided distributed lstm for cyber–physical–social big
data. IEEE Transactions on Neural Networks and Learning Systems,
34(10):7286–7298, 2023.

[6] Hossen Md Rajib, Islam Mohammad A., and Ahmed Kishwar. Prac-
tical efficient microservice autoscaling with qos assurance. In Pro-
ceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, page 240–252, New York, NY,
USA, 2022. Association for Computing Machinery.

[7] Mirhosseini Amirhossein, Elnikety Sameh, and Wenisch Thomas F.
Parslo: A gradient descent-based approach for near-optimal partial slo
allotment in microservices. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’21, page 442–457, New York, NY, USA,
2021. Association for Computing Machinery.

[8] Luo Shutian, Xu Huanle, and Ye Kejiang et al. Erms: Efficient
resource management for shared microservices with sla guarantees.
In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 1, ASPLOS 2023, page 62–77, New York, NY, USA, 2022.
Association for Computing Machinery.

[9] Kwan Anthony, Wong Jonathon, and Jacobsen Hans-Arno et al.
Hyscale: Hybrid and network scaling of dockerized microservices
in cloud data centres. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pages 80–90, 2019.

[10] Satish Narayana Srirama, Mainak Adhikari, and Souvik Paul. Appli-
cation deployment using containers with auto-scaling for microser-
vices in cloud environment. Journal of Network and Computer
Applications, 160:102629, 2020.

[11] Vettoruzzo Anna, Bouguelia Mohamed-Rafik, and Vanschoren et al.
Advances and challenges in meta-learning: A technical review.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(7):4763–4779, 2024.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1126–1135. PMLR, 06–11 Aug
2017.

[13] Haoyu Bai, Minxian Xu, and Kejiang Ye et al. Drpc: Distributed
reinforcement learning approach for scalable resource provisioning in
container-based clusters. IEEE Transactions on Service Computing,
2024.

[14] Xu Minxian, Song Chenghao, and Wu Huaming et al. esdnn:
Deep neural network based multivariate workload prediction in cloud
computing environments. ACM Trans. Internet Technol., 22(3), aug
2022.

[15] Fujimoto Scott, Hoof Herke, and Meger David. Addressing function
approximation error in actor-critic methods. In International confer-
ence on machine learning, pages 1587–1596. PMLR, 2018.

[16] Ma Ting, Huang Longtao, and Lu Qianqian et al. Kr-gcn: Knowledge-
aware reasoning with graph convolution network for explainable
recommendation. ACM Trans. Inf. Syst., 41(1), jan 2023.

[17] Guo Xin, Wang Wei-Sheng, and Zhang Jie et al. An online growing-
and-pruning algorithm of a feedforward neural network for nonlinear
systems modeling. IEEE Transactions on Automation Science and
Engineering, pages 1–12, 2024.

[18] Zhang Shubo, Wu Tianyang, and Pan Maolin et al. A-sarsa: A
predictive container auto-scaling algorithm based on reinforcement
learning. In 2020 IEEE International Conference on Web Services
(ICWS), pages 489–497, 2020.

[19] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K. Ramakrish-
nan, Meng Yan, Xiaohong Zhang, and Alex X. Liu. Deepscaling:
Autoscaling microservices with stable cpu utilization for large scale
production cloud systems. IEEE/ACM Transactions on Networking,
pages 1–16, 2024.

[20] Kardani-Moghaddam Sara, Buyya Rajkumar, and Ramamohanarao
Kotagiri. Adrl: A hybrid anomaly-aware deep reinforcement learning-
based resource scaling in clouds. IEEE Transactions on Parallel and
Distributed Systems, 32(3):514–526, 2021.

[21] Timothy Hospedales, Antreas Antoniou, and Paul et al Micaelli.
Meta-learning in neural networks: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(9):5149–5169, 2022.

[22] Haoran Qiu, Weichao Mao, and Chen Wang et al. AWARE: Automate
workload autoscaling with reinforcement learning in production cloud
systems. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23), pages 387–402, Boston, MA, July 2023. USENIX Associ-
ation.

[23] Qu Guanjin, Wu Huaming, and Li Ruidong et al. Dmro: A deep
meta reinforcement learning-based task offloading framework for
edge-cloud computing. IEEE Transactions on Network and Service
Management, 18(3):3448–3459, 2021.

[24] Xue Siqiao, Qu Chao, and Shi Xiaoming et al. A meta reinforcement
learning approach for predictive autoscaling in the cloud. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’22, page 4290–4299, New York, NY, USA,
2022. Association for Computing Machinery.

	Introduction
	Background and Motivation
	Impact of the Instance Size of Microservices
	Impact of the microservice updates
	Meta-learning and Reinforcement Learning

	MSARS Workflow Design
	Service Monitor
	Meta Allocator
	Workload Forecaster
	RL Controller

	Framework of MSARS
	Meta Allocator
	GCN Model
	Meta Learner

	RL Controller
	Reward Formulation

	Experimental Evaluations
	Experimental Setup
	Robustness and Accuracy of Meta Allocator
	RL Decision with SLO Allocation Strategies

	Related Work
	SLO allocation ensures SLO
	Reinforcement-Learning ensures SLO
	Meta-Learning ensures SLO

	Conclusion and Future Work
	References

