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Abstract—Traffic congestion at toll plazas is a critical issue in
urban infrastructure, which is often exacerbated by surges in
vehicle volume during peak hours. The congestion typically
arises from imbalances in traffic demand and toll booth
efficiency, often resulting in safety hazards and delays. Existing
solutions, while addressing efficiency or safety aspects, often
lack a comprehensive approach for efficient traffic manage-
ment at toll plazas. To address this challenge, in this paper, we
propose TollHelper, a framework designed to optimize vehicle
scheduling and load balancing at toll plazas as well as improve
safety. Our approach treats concurrently arriving vehicles as
a single scheduling batch, guiding different vehicles from the
same batch to different toll booths to enhance safety and reduce
congestion. We address this scheduling constraint in both
general and heterogeneous toll booth scenarios, introducing
effective load balancing algorithms to minimize toll booth
service loads and optimize user driving experiences. Based on
empirical studies, we demonstrate that our methods achieve
improvements in standard deviation compared to the baselines,
ranging from 51.6% to 97.0% improvement in terms of load
balancing effects.

Index Terms—toll plaza, heterogeneous efficiency, load balanc-
ing, batch scheduling, safety

1. Introduction

Traffic congestion is a major challenge in modern urban
life, often occurring at key nodes in the road network. Toll
plazas on expressways are typical hotspots where thousands
of vehicles need to pass through quickly and safely every
day in big city. As a result, these plazas often experience
high congestion due to the imbalance between traffic de-
mand and supply, especially during peak hours when the
number of travelers surges [1], [2].

While the imbalance between demand and supply is the
main cause of traffic congestion, the severity of the conges-
tion usually stems from several other related factors that can
be observed at any toll plaza. First, the vehicles entering
the station lack necessary guidance, making it difficult to
choose the optimal toll booth for passing through. Second,

the efficiency of toll booths is not consistent, which hinders
the formation of a smooth vehicle flow to reduce traffic.
Finally, the vehicles arriving in parallel may have a criss-
cross—different vehicles trying to enter the same queue of
a toll booth, leading to potential scratches and collisions,
which could further obstruct the traffic [3]. To address these
issues and optimize traffic flow, numerous studies have been
conducted in both academia and industry, each with its own
goals and respective methods [4], [5], [6].

Although these existing solutions (including variable
lane configurations, optimized lane allocations and traffic
forecasting, etc.) can address certain aspects of the problem
in some particular scenarios, they often fail to consider
the third aspect mentioned above and consequently lack an
integrated comprehensive solution for effectively managing
traffic flow in a safe way at toll plazas [7], [8].

To fill this gap, we focus on the traffic control problem
at toll plazas with an attempt to achieve safe and efficient
traffic control. To this end, we carefully design a set of
optimization algorithms to balance the traffic across toll
booths, ensuring that vehicles arriving in parallel, as shown
in Figure 1, are dispatched to different toll booths in a
criss-cross free way. With this strategy, we can increase
the distance and space between vehicles, thus reducing the
likelihood of accidents and enhancing the safety [9], [10].
Furthermore, to integrate these algorithms for efficiently
addressing the traffic control challenges while ensuring the
safety at toll plazas, we also develop a framework, called
TollHelper.

Our algorithms target two key scenarios. Firstly, in gen-
eral scenarios, we explore the methods for guiding vehicles
entering the toll plaza within the same small time slot to
different booths. This step lays the foundation for load
balancing, aiming to distribute traffic evenly across available
toll booths and minimize the maximum service load, i.e., the
cumulative service time at each booth. Secondly, we analyze
the scenarios where toll booths operate at varying levels of
efficiency due to collection method, physical location, and
staff proficiency [5], [7], [11]. To accommodate these dis-
parities, we investigate several specific allocation methods.
By employing these load balancing scheduling algorithms,
we are able to balance the service load between booths and



Figure 1: The scenario of vehicle batch scheduling.

minimize the maximum cumulative service time, thereby
optimizing the user experience.

In summary, our key contributions are as follows:

1) We introduce TollHelper, an auxiliary framework to
integrate the proposed scheduling algorithms with
the objective to enhance the safety and balance the
traffic loads across all the toll booths.

2) We propose a greedy algorithm for scheduling vehi-
cles arriving simultaneously for general scenario of
toll plazas, and a dynamic programming algorithm
for further optimized scheduling.

3) We present two algorithms for the heterogeneous
service capacities of toll booths: one achieves a
local optimal solution for each allocation, and the
other uses a heuristic to monitor deficiencies reach-
ing a specified actual service time threshold.

4) We conduct an empirical study by using realistic
highway vehicle datasets [12] to evaluate our meth-
ods and compare them with baselines to validate the
effectiveness.

Overall, these contributions demonstrate the potentials
of our approach to improve both the operational efficiency
and safety of toll plaza traffic managements.

In the reminders of this paper, we first overview related
work in Section 2, and formulate the problem and describe
the TollHelper framework in Section 3. Then, we propose
our scheduling algorithms in Section 4, and demonstrate
their effectiveness on real traffic datasets in Section 5. We
finally conclude the paper in the last section.

2. Related Work

Traffic management is essential in modern transportation
systems. By optimizing traffic signals, monitoring traffic
flow, and implementing intelligent transportation technolo-
gies, it reduces road congestion, improves transit efficiency,
decreases accident rates, and enhances overall traffic safety
and travel experience.

Recent research has extensively explored traffic manage-
ment, particularly focusing on toll plazas, which are critical
nodes in the transportation network [13], [14]. Yuan et
al. [5] proposed an optimal control method to improve traffic
efficiency using tollbooth lane configuration and variable
speed limit (VSL) control. Zhou et al. [15] introduced a

proactive traffic control method using dynamic lane con-
figuration and VSL, coupled with a long short-term mem-
ory neural network model for short-term traffic demand
forecasting at toll plazas. Furthermore, the adoption of
emerging technologies such as machine learning and neural
networks to predict traffic patterns and enhance flow is
increasingly prevalent. Pan et al. [16] propose Ising-Traffic,
a dual-model Ising-based traffic prediction framework that
achieves higher accuracy and lower latency than state-of-
the-art solutions, effectively addressing traffic congestion
prediction under uncertainty. In contrast, Petrovic et al. [6]
utilized several recurrent neural network architectures to
predict the average intensity of vehicle arrivals whereby
the number of lanes opened in each time period can be
calculated for cost-effective toll service. Ramana et al. [17]
designed and enforced a traffic prediction scheme using
Vision Transformers and CNN to accurately forecast traffic
flow on a city-wide scale, demonstrating superior precision,
accuracy, and recall, particularly during anomalous traffic
situations. Yang et al. [18] proposed a multi-graph learning-
based model named TPP-GCN to predict traffic propagation
flow in urban road networks by capturing both temporal and
multi-spatial features using multi-layer convolution. These
approaches focus primarily on efficiency gains, but do not
include safety as a consideration.

However, toll plazas have a higher accident rate com-
pared to regular road sections, often significantly imped-
ing traffic [19]. Therefore, enhancing toll plaza safety is
crucial for ensuring smooth road conditions. Xing et al.
[20] used logistic regression and five non-parametric mod-
els to examine the relationship between influencing factors
and vehicle collision risk, comparing the models’ strengths
and weaknesses for accurate risk assessment. In a further
study, Xing et al. [21] introduced the concept of motion
constraint degree to investigate traffic conflict risks in toll
plaza diverging areas, developing a two-step method for
risk regression and prediction using random parameters
logit models and machine learning, demonstrating superior
performance over conventional methods. In addition, Mo
et al. [22] analyzed and predicted short-term crash risk at
toll plazas using a random-effects logit regression model
to identify crash precursors, coupled with an LSTM-CNN
network for crash prediction, showcasing its effectiveness
in enhancing traffic safety and real-time management at toll
plazas. Xiang et al. [23] studied how to optimize guidance
signage systems, demonstrating that a complete manual toll
collection guidance plan can significantly improve driver
performance and safety. These efforts contribute a lot to
enhancing the safety of toll plazas, but additional measures
can often be taken to further improve the service efficiency.
Unfortunately, this aspect is frequently overlooked.

In short, studies on toll plazas usually do not give
reasonable consideration to the safety hazards involved in
the optimization strategies to improve efficiency, and opera-
tional efficiency is often sacrificed when safety is improved.
By contrast, our study focuses on rationally combining the
operational efficiency and safety of toll plazas, and considers
enhancing vehicle safety as a prerequisite and an important



Figure 2: Vehicle batch scheduling framework for toll plaza.

means to ensure operational efficiency, based on which the
efficiency is further enhanced by scheduling algorithms.

3. Problem Modeling and Framework Design

In front of toll booths, there are typically multiple par-
allel lanes, with the number of lanes generally fewer than
the number of toll booths. Without loss of generality, our
model assumes an equal number of lanes and toll booths. It
is always possible to view the vehicles advancing in a small
time slot as a batch (at most one vehicle per lane and no
empty batches). Upon arrival, each vehicle is dispatched to
a distinct toll booth to complete its service.

The service time of vehicles varies due to multiple
factors such as vehicle type, size, weight, toll rates, and
personnel attributes [24], [25]. Nonetheless, researchers have
employed various methods such as mathematical modeling,
historical service record analysis, and other technologies
to predict vehicle service times, and the accuracy of such
predictions has been improved over time [26]. Therefore, we
can utilize these prediction methods to consider the service
time of each vehicle as known.

The vehicle batch scheduling problem can be formulated
as a model involving m toll booths, where the load (i.e.,
cumulative service time) of each booth is denoted by L⃗ ≜
[L1, L2, . . . , Lm] ∈ R1×m. Let B ≜ {B1, B2, . . .} represent
the set of all vehicle batches that need to be scheduled,
with each batch Bk ∈ B, Bk ≜ {v1, v2, . . .} containing at
least one and no more than m vehicle service times. The
service times of vehicles within each batch Bk are allocated
to distinct toll booths. For any v, v′ ∈ Bk, if v is assigned
to booth Li and v′ is assigned to booth Lj , with i, j ∈
{1, 2, . . . ,m}, then it must be that i ̸= j. Let τ denote the
moment when the vehicle batch appears.

Additionally, we will consider the heterogeneous toll
booth scenario, let P⃗ ≜ [p1, p2, . . . , pm] ∈ R1×m denote
the service efficiency ratios of the toll booths relative to a
standard toll booth.

Our objective is to achieve load balancing by minimizing
the final maximum service load, i.e., the cumulative actual
service time. Thus, the optimization objective can be for-
mulated as min {max{Li} | i ∈ {1, 2, . . . ,m}} .

In order to apply traffic control practically, we also pro-
pose a comprehensive framework called TollHelper, which

aims to optimize vehicle flow and ensure safety through load
balancing techniques, as shown in Figure 2. The framework
consists of the following main modules:

1) Batch Observer: This module is responsible for
detecting incoming vehicles at the toll plaza. It
groups vehicles into batches based on their arrival
within a short time window or when a second
vehicle appears in the same lane. This data, along
with each vehicle’s characteristics, is then passed
to the next module.

2) Service Estimator: Using existing vehicle service
time prediction algorithms, this module calculates
the service time for all vehicles in each batch. The
results are then forwarded to the next module.

3) Booth Scheduler: This module uses the designed
vehicle batch scheduling algorithm to allocate each
vehicle in the batch to different toll booths. The
scheduling results are then sent to the next module.

4) Direction Indicator: This module directs vehicles
to their assigned toll booths. It provides clear di-
rections and instructions to drivers, ensuring that
vehicles reach the correct booths efficiently and
safely.

The performance of the Booth scheduler module is
crucial for the overall efficiency of the TollHelper frame-
work. In the following sections, we discuss vehicle batch
scheduling algorithms for both general and heterogeneous
toll booth efficiency scenarios. By optimizing the Booth
Scheduler, the algorithms can significantly enhance traffic
flow and improve safety at the toll plaza.

4. Vehicle Batch Dispatch Algorithms

In this section, we consider the vehicle scheduling al-
gorithms within the framework, addressing two scenarios:
whether the toll stations are heterogeneous. For each sce-
nario, we introduce effective load balancing algorithms ac-
cordingly.

4.1. General Scenario

For the general scenario, to speed up the decision time,
we have developed a simple Load Greedy Algorithm (LGA).
It schedules a batch at each moment, arranging the vehicles
in descending order and then sequentially assigning the
vehicle to the booth that is currently least loaded and has
no other vehicles.

Theorem 1. Algorithm 1 ensures that a local optimal solu-
tion is obtained and minimizes the maximum load difference
between the booths at any moment τ .

Proof. Without loss of generality, at moment τ , let Lm ≤
Lm−1 ≤ · · · ≤ L1 denote the loads of the toll booths, and let
v1 ≥ v2 ≥ · · · ≥ vm denote the service times of the vehicles
in the same batch. Both sequences can have trailing zeros.
After Algorithm 1 completes the assignment, the load of



Algorithm 1 Load Greedy Algorithm (LGA)
Input:

m: Number of toll booths;
B: A group of vehicle batches.

Output:
L⃗: Service load of toll booths.

1: L⃗← [0] ∗m
2: for all B in B do
3: I⃗ ← sort ascend(index(L⃗));
4: B ← sort descend(service time(B));
5: pos← 0;
6: for all v in B do
7: L⃗[I⃗[pos]]← L⃗[I⃗[pos]] + v;
8: pos← pos+ 1;
9: end for

10: end for

each booth is Lm+v1, Lm−1+v2, ..., L1+vm respectively.
Let the maximum value is Lm−i+1 + vi, i ∈ {1, 2, . . . ,m}.

Assuming that there is a combination method with a
smaller maximum value, where the v

′
< vi combine with

Lm−i+1. Now consider the new position of vi. Keep the
order of Lm ≤ ... ≤ Lm−i+1 ≤ ... ≤ L1, if vi is assigned to
the right of Lm−i+1, then Lx+vi ≥ Lm−i+1+vi, x ∈ {m−
i, . . . , 1}, this contradicts the hypothesis. If vi is assigned
to the left of Lm−i+1, it’s obvious that at least one vj ≥
vi, j ∈ {1, . . . , i − 1} is assigned to the right of Lm−i+1,
so Lx + vj ≥ Lm−i+1 + vi, this contradicts the hypothesis.
So there is no other combination method with a smaller
maximum value than Algorithm 1, i.e., it obtains a local
optimal solution.

Similarly, it can be concluded that no other combination
method produces a greater minimum value than Algorithm
1. Therefore, maximum load difference between booths is
minimized.

In Algorithm 1, the time complexity for the two sorts
is O(m logm), and updating the load is O(m), resulting
in a total time complexity of O(m logm) for dispatching a
batch.

We can enhance the load balancing performance by
implementing additional measures. For instance, detecting
incoming vehicles at a distance far from the toll booths and
subsequently controlling their speed allows the Booth Sched-
uler module to dispatch multiple vehicle batches at once. By
treating the current service load at the toll booth as an initial
batch and combining it with subsequent vehicle batches,
we can establish an optimal sequence for merging multiple
batches, referred to as a multi-batch merging scheme. This
approach enables more effective load balancing over a given
distance, especially during congested hours.

To achieve this, we propose a Dynamic Programming
Optimization Algorithm (DPOA) as shown in Algorithm 2.
Assuming that k vehicle batches are scheduled simultane-
ously each time, and that the initial batch of toll booth loads
and vehicle batches form a slice, the length of the slice is
k + 1. Besides, we extract the lines 3-9 from Algorithm
1 and replace L⃗ with another batch to create a prepared

Algorithm 2 DP Optimization Algorithm (DPOA)
Input:

m: Number of toll booths;
k: The number of vehicle batches dispatched at once;
B: A group of vehicle batches.

Output:
L⃗: Service load of toll booths.

1: L⃗← [0] ∗m;
2: while B do
3: slice← [L⃗,B[0], . . . ,B[k − 1]];
4: B ← B[k : end];
5: for j ← 0 to k do
6: a← [∞]× (k − j + 1);
7: d.append(a);
8: d[j, 0]← slice[j];
9: end for

10: for r ← 1 to k do
11: for s← 0 to k − r do
12: for t← s to s+ r − 1 do
13: temp← f(d[s, t− s], d[t+ 1, s+ r − t− 1]);
14: if max(d[s, r]) > max(temp) then
15: d[s, r]← temp;
16: end if
17: end for
18: end for
19: end for
20: L⃗← d[0, k];
21: end while

function f , which takes two batches as input and outputs
their merging results.

We use a dynamic programming array d to record the
optimal result (a new batch) after merging from the i-th
batch to the j-th batch of the slice. The base case of the
dynamic transfer process is when i = j:

d[i, j] = slice[i]. (1)

During the initialization phase, d is initialized as a three-
dimensional array, shaped like an upper triangular matrix,
where each element is an array:

d =


slice[0] [+∞] [+∞] . . . [+∞]

slice[1] [+∞] . . . [+∞]
slice[2] . . . [+∞]

. . .
...

slice[k]

 . (2)

For i < j, the transfer process is as follows:

d[i, j] = min
i≤p≤j−1

max (f(d[i, p], d[p+ 1, j])) . (3)

The final value of d is computed using three nested loops
in lines 10-19 of Algorithm 2. These loops represent, from
outer to inner, the range of the merging batches, the various
starting points of that range, and the determination of the
optimal solution for merging the batches within that range
by subproblems.

When k vehicle batches are optimized, the time com-
plexity of initializing the dynamic programming array d in
Algorithm 2 is O(k). The time complexity of executing the



Algorithm 3 Local Optimal Greedy Algorithm (LOGA)
Input:

m: Number of toll booths;
P⃗ : Efficiency ratio of heterogeneous toll booths;
B: A group of vehicle batches.

Output:
L⃗: Service load of toll booths.

1: P⃗ ← sort ascend(P⃗ );
2: Initialize A, a as an empty array;
3: for i← 0 to m− 2 do
4: for j ← i+ 1 to m− 1 do
5: a.append((P⃗ [i]− P⃗ [j])/(P⃗ [i]× P⃗ [j]));
6: end for
7: A.append(a);
8: end for
9: L⃗← [0] ∗m;

10: for all B in B do
11: B ← sort descend(service time(B));
12: I⃗ ← [0, 1, . . . ,m− 1];
13: for all v in B do
14: i, j ← 0, 1;
15: while j < len(I⃗) do
16: if L⃗[I⃗[i]] ≤ L⃗[I⃗[j]] then
17: j ← j + 1;
18: else if v × A[I⃗[i], I⃗[j] − I⃗[i]] > L⃗[I⃗[i]] − L⃗[I⃗[j]]

then
19: j ← j + 1;
20: else
21: i← j;
22: j ← j + 1;
23: end if
24: end while
25: L⃗[I⃗[i]]← L⃗[I⃗[i]] + v/P⃗ [I⃗[i]];
26: Remove I⃗[i] from I⃗;
27: end for
28: end for

f function is O(m logm), then the time complexity of the
dynamic programming process is O(m logm ∗ k3). Hence
the total time complexity is O(m logm ∗ k3).

4.2. Heterogeneous Toll Booths

The dynamic adjustment of resources and configurations
at toll booths leads to heterogeneous service efficiencies.
Therefore, we consider load balancing in this realistic con-
text. As defined in Section 3, the ratio of each toll booth’s
service efficiency to the standard service efficiency is de-
noted by P⃗ . At this point, we consider the output of the
Service Estimator module as the Standard Service Time
(SST), while the Actual Service Time (AST) of the vehicle
varies depending on the efficiency of the toll booth.

It is intuitive that at each moment τ , we are able to
achieve a local optimal solution, similar to Algorithm 1. So
we proposed a Local Optimal Greedy Algorithm (LOGA)
as shown in Algorithm 3.

Let p ̸= q and p, q ∈ {1, 2, . . . ,m} , with P⃗ [p] > P⃗ [q].
To minimize the maximum load (cumulative AST) when
assigning a vehicle v, the following considerations should
be made:

• If Lp ≤ Lq, booth q should be eliminated because
booth p is faster and has less load.

• If Lp > Lq, consider:

Lq +
v

P⃗ [q]
> Lp +

v

P⃗ [p]
. (4)

This inequality indicates that the load at booth q
exceeds that at booth p, hence booth q should be
eliminated. It morphs into:

v(P⃗ [p]− P⃗ [q])

P⃗ [p]P⃗ [q]
> Lp − Lq. (5)

Conversely, if

v(P⃗ [p]− P⃗ [q])

P⃗ [p]P⃗ [q]
≤ Lp − Lq. (6)

then booth p should be eliminated.

Based on the above discussion, we can derive an efficient
assignment strategy. At any moment τ , vehicles should be
arranged in descending order of their SST and assigned
accordingly. Among the remaining toll booths that have
not yet been assigned a vehicle, initiate the search process
starting with two booths. Iteratively eliminate one toll booth
at a time based on the above judgment criteria. Ultimately,
identify the most suitable toll booth, assign the vehicle to
it, and remove that booth from the list of remaining booths.

To simplify the search process, we sort P⃗ in descend-
ing order and define ap,q = P⃗ [p]−P⃗ [q]

P⃗ [p]P⃗ [q]
to precompute the

following upper triangular matrix A:

A =


a0,1 a0,2 · · · a0,m−1

a1,2 · · · a1,m−1

. . .
...

am−2,m−1

 . (7)

By utilizing matrix A in Algorithm 3, the judgment
process becomes more concise and clearer.

Theorem 2. At any moment τ , the Algorithm 3 obtains a
local optimal solution.
Proof. At a certain moment τ , assume that the booth chosen
by vehicle v reaches the maximum load. We now show that
making the maximum load smaller is impossible. When v
selects a booth, it has already compared all the remaining
booths and selected the one that minimizes the load, so we
do not have to try to adjust v to these booths. When adjusting
v to a booth that has already been selected before v, there
must be at least one vehicle v′ ≥ v that is adjusted to or after
the original position of v. Consequently, the AST generated
by v′ must be greater than or equal to the time generated
by v, thus a smaller maximum load cannot be achieved. So
the Algorithm 3 achieves a local optimal solution.

In Algorithm 3, each time a batch is dispatched, the
time complexity for sorting is O(m logm). Allocating all
vehicles within the batch through a nested loop has a time
complexity of O(m2), resulting in a total time complexity
of O(m2).



Algorithm 4 Reverse Load Greedy Algorithm(RLGA)
Input:

m: Number of toll booths;
T : Time period;
P⃗ : Efficiency ratio of heterogeneous toll booths;
B: A group of vehicle batches.

Output:
L⃗: Service time of toll booths.

1: L⃗, θ⃗ ← [0] ∗m;
2: for all p in P⃗ do
3: θ⃗.append(p× T );
4: end for
5: L⃗

′
← θ⃗ ;

6: for all B in B do
7: I⃗ ← sort descend(index(L⃗

′
));

8: B ← sort descend(service time(B));
9: pos← 0;

10: for all v in B do
11: L⃗

′
[I⃗[pos]]← L⃗

′
[I⃗[pos]]− v;

12: L⃗[I⃗[pos]]← L⃗[I⃗[pos]] + v/P⃗ [I⃗[pos]];
13: if L⃗

′
[I⃗[pos]] ≤ 0 then

14: L⃗
′
← L⃗

′
+ θ⃗;

15: end if
16: pos← pos+ 1;
17: end for
18: end for

The comparison for each allocation in Algorithm 3 is
rigorous and we observed that heterogeneous toll booths
require different SST to achieve the same AST. In order to
simplify the process, we propose a greedy algorithm, called
Reverse Load Greedy Algorithm (RLGA), that heuristically
assigns vehicles by considering the reverse SST each booth
requires to reach a specific point in AST. To implement this,
we set a time period T and calculate the initial reverse SST
over one period. When the reverse SST of a booth becomes
less than or equal to zero, we update the reverse SSTs of all
booths by the period T until all reverse SSTs are positive.
Let L⃗

′
represent the reverse SST of each booth, then the

update process is:

L⃗
′
= L⃗

′
+ T × P⃗ . (8)

The choice of the time period T can affect the effective-
ness of Algorithm 4. If T is too large, most vehicles will
be assigned to the fast booths, leaving other booths with
minimal load or even idle, resulting in poor load balancing.
Conversely, if T is too small, updates will be frequent,
causing unnecessary delays. Therefore, a balance must be
struck when setting T .

When we set a reasonable period T , for each batch al-
location, Algorithm 4 has a time complexity of O(m logm)
for sorting and O(m) for updating the reverse load, resulting
in a total time complexity of O(m logm). Regardless, com-
pared to Algorithm 3, Algorithm 4 features a simpler process
and incurs fewer computational costs, especially when there
is a predetermined completion deadline or a long time period
is set.

TABLE 1: Normal Distributions Based on Vehicle Attributes

Vehicle type Length of vehicle (feet) Normal Distribution

Motorcycle Any N (12, 72)

Auto ≤ 15 N (20, 8.52)

Auto > 15 N (25, 102)

Truck Any N (30, 122)

5. Performance Evaluations
In this section, we present a comprehensive analysis of

the performance of our proposed algorithms. We evaluate
their effectiveness through a series of experiments. The
results highlight the advantages of our approaches in terms
of standard deviation and maximum load. Additionally, we
compare our methods with baselines to demonstrate the
improvements achieved.

5.1. Experimental Setup
We constructed a simulation environment based on traf-

fic data from two highway segments in the Next Generation
Simulation (NGSIM) dataset [12]: US-101 and I-80. Both
subsets cover different time periods, corresponding to dif-
ferent levels of congestion. We extracted continuous data
from two time periods and generated vehicle batches with
a 1-second limit. Since US-101 and I-80 include 5 and 6
main lanes respectively, and toll plazas generally have more
toll booths than these numbers, we extracted 200 continuous
batches from the generated data and divided them into two
segments and combined, resulting in 100 vehicle batches for
10 lanes and 12 lanes.

In the simulation environment, we determined the ser-
vice time for each vehicle based on the distribution patterns
from the existing record data, using different normal distri-
butions according to vehicle type and length. The specific
normal distributions followed are shown in Table 1. The
service time was strictly ensured to be between 3 and 60
seconds. For heterogeneous service efficiencies, we start
from 0.5 and increase by 0.25 each time, repeating each
number once, thereby obtaining the vector P⃗ .

To evaluate the performance of our proposed algorithms,
we compared them against several well-known baseline
algorithms commonly used for load balancing and schedul-
ing problems. Below, we briefly describe each comparative
algorithm:

• Batch Round-Robin Algorithm (BRRA) [27]: The
BRRA assigns vehicles to toll booths in a cyclic
manner. It matches the number of toll booths to the
number of vehicles in each batch, ensuring each toll
booth receives one vehicle from the batch.

• Randomized Load Minimization Algorithm (RLMA)
[28]: The RLMA generates multiple (10 in our
experiments) random allocation schemes for each
batch of vehicles and selects the one that minimizes
the largest current load of the toll booths.

We evaluate the algorithms’ performance with two met-
rics. On one hand, we calculate the standard deviation of the
toll booths’ loads after allocation, which directly reflects the



(a) 7:50 a.m. to 8:05 a.m., repre-
senting the buildup of congestion
in US-101.

(b) 8:20 a.m. to 8:35 a.m., repre-
senting full congestion during the
peak period in US-101.

(c) 4:00 p.m. to 4:15 p.m., repre-
senting the buildup of congestion
in I-80.

(d) 5:15 p.m. to 5:30 p.m., repre-
senting full congestion during the
peak period in I-80.

Figure 3: The variation in the ratio of the maximum load
to the ideal load using US-101 and I-80 data in the general
scenario.

TABLE 2: Comparison of standard deviations for algorithms
across time periods on US-101 and I-80 datasets in general
scenarios.

US-101 I-80

7:50-8:05 8:20-8:35 4:00-4:15 4:15-5:30
BRRA 63.2 44.7 55.2 49.1
RMLA 16.1 20.2 19.61 22.67
LGA 7.0 7.2 9.5 9.0

DPOA 2.2 0.6 1.4 0.9

final load balancing effect. On the other hand, to visually
present the results, we compute the ideal load for each toll
booth, assuming an even distribution of loads across all toll
booths, which is usually impossible for any algorithm to
achieve:

Lideal =

∑τ
i=1

∑
v∈Bi

v

m
. (9)

For heterogeneous issue:

Lideal =

∑τ
i=1

∑
v∈Bi

v∑10
i=1 P⃗ [i]

. (10)

We then analyze the results using the ratio of the max-
imum load obtained by each algorithm to the ideal load.
Assume that L∗ is the current maximum load generated
by the optimal scheduling algorithm, since the ideal load
Lideal ≤ L∗, we have:

r =
L

Lideal
≥ L

L∗ , (11)

where the right-hand term is the competition ratio.

5.2. Result Analysis

Since RLMA is non-deterministic, each run may yield
different results. To mitigate randomness, we executed

(a) 7:50 a.m. to 8:05 a.m., represent-
ing the buildup of congestion in US-
101.

(b) 8:20 a.m. to 8:35 a.m., represent-
ing full congestion during the peak
period in US-101.

(c) 4:00 p.m. to 4:15 p.m., represent-
ing the buildup of congestion in I-
80.

(d) 5:15 p.m. to 5:30 p.m., represent-
ing full congestion during the peak
period in I-80.

Figure 4: The variation in the ratio of the maximum load to
the ideal load using US-101 and I-80 data in the heteroge-
neous scenario.

TABLE 3: Comparison of standard deviations for algorithms
across time periods on US-101 and I-80 datasets in hetero-
geneous scenarios.

US-101 I-80

7:50-8:05 8:20-8:35 4:00-4:15 4:15-5:30
RMLA 33.9 50.1 49.6 47.6
LOGA 9.1 9.1 8.6 7.7
RLGA 12.1 13.3 15.0 14.3

RLMA ten times in each experiment.
In general scenario, we set the batch size for each

optimization in DPOA to be 10. Table 2 shows the standard
deviation of toll booth loads when scheduling up to 100
batches. It can be seen that the comparative algorithm
RMLA outperforms BRRA. Therefore, we will primarily
compare RMLA with the proposed algorithm in subsequent
analyses. When comparing LGA to RMLA, the standard
deviation was reduced by 56.5%, 64.4%, 51.6%, and 60.3%
for the different experimental setups. When comparing
DPOA to RMLA, the standard deviation was reduced by
86.3%, 97.0%, 92.9%, and 96.0% respectively. These results
demonstrate that LGA and DPOA have significantly lower
standard deviations, indicating that they achieve better load
balancing. Figure 3 display the ratio of maximum load to
ideal load with one run of RLMA.

In the heterogeneous scenario, for the RLGA, we set the
period T as the value of the maximum vehicle service time
in the first batch divided by the highest service speed ratio
of the toll booths. When service efficiencies are different,
the coarse-grained BRRA further reduces its effectiveness,
resulting in poor performance and is therefore no longer
used for comparison. Table 3 shows the standard deviation of
toll booth loads when scheduling up to 100 batches. We can
see that LOGA improves the standard deviation by 73.2%,



81.8%, 82.7%, and 83.8% over RMLA, respectively. And
RLGA improves the standard deviation by 64.3%, 73.4%,
69.8%, and 70.0% over RMLA, respectively. Figure 4 shows
the ratio of maximum load to ideal load with one run
of RLMA, and it is evident that LOGA and RLGA both
perform better than RLMA.

From the results, it is evident that the BRRA performs
the worst because of its coarse-grained scheduling in general
scenario. Additionally, both in general and heterogeneous
scenarios, RMLA is not only weaker than the proposed algo-
rithm in terms of performance, but it is also less stable due
to the huge feasible solution space, and large fluctuations
may occur in multiple runs. However, our proposed methods
overcome these limitations effectively.

6. Conclusion

This paper addresses the challenges of traffic congestion
and safety hazards at toll plazas through the introduction of
TollHelper, a comprehensive framework for rational vehicle
scheduling, which aims to improve service efficiency and
enhance safety by guiding simultaneously arriving vehicles
to different toll booths. In general scenarios, we offer ef-
ficient greedy algorithm for scheduling vehicles arriving
simultaneously, alongside a dynamic programming approach
that further enhances scheduling effectiveness. Moreover, we
tackle the issue of heterogeneous service capacities with
two algorithms: one providing local optimal solutions for
each allocation and another employing a heuristic to manage
service time variations effectively. Through extensive simu-
lations based on real data, our methods demonstrate superior
performance compared to existing scheduling approaches.
This research not only contributes novel algorithms but also
provides practical insights into managing traffic flow at toll
plazas, paving the way for enhanced operational efficiency
and improved safety in urban transportation networks.
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