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Abstract. The widespread adoption of the large language model (LLM),
e.g. Generative Pre-trained Transformer (GPT), deployed on cloud com-
puting environment (e.g. Azure) has led to a huge increased demand for
resources. This surge in demand poses significant challenges to resource
management in clouds. This paper aims to highlight these challenges by
first identifying the unique characteristics of resource management for
the GPT-based model. Building upon this understanding, we analyze
the specific challenges faced by resource management in the context of
GPT-based model deployed on clouds, and proposed resource profiling
and prediction algorithms for inference requests. To facilitate efficient re-
source management, we introduce a comprehensive resource management
framework, featuring resource profiling and forecasting methods specifi-
cally designed for GPT-based models. Furthermore, we discuss the future
directions for resource management for the GPT-based model, highlight-
ing potential areas for further exploration and improvement. Through
this study, we aim to provide valuable insights into resource management
for GPT-based models deployed in clouds and promote their sustainable
development for GPT-based models and applications.

Keywords: GPT-based Model, Cloud Computing, Task Profiling, Re-
source Management Framework

1 Introduction

The GPT-based model is a language generation model based on the transformer
architecture [16], which learns the statistical regularities and semantic knowledge
of language through unsupervised pre-training on large-scale text datasets. The
model can then be fine-tuned on specific domain or task data through supervised
or semi-supervised learning to adapt to different language application scenarios
[3, 13]. The GPT-based model can generate natural, fluent, context-aware, and
semantically coherent language content, making it suitable for applications such
as text summarization, machine translation, sentiment analysis, question answer-
ing systems, and chatbots. Figure 1 provides examples of current applications
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of the GPT-based model for different areas [2, 11], including academic, medical,
office, education and marketing.

Fig. 1: GPT-based Model Application Areas

The GPT-based model was first proposed and developed by OpenAI and
has been developed into multiple versions and variants, such as GPT-1, GPT-2,
GPT-3, and GPT-4 [12]. The main differences between these models lie in the
number of parameters, dataset size, and training methods. For example, GPT-3
is currently one of the largest GPT-based models, with 175 billion parameters, re-
quiring 800 GB of storage [13]. It has achieved excellent performance on multiple
natural language processing tasks. Table 1 lists several mainstream GPT-based
models, providing relevant details such as model names, research teams, release
dates, and model sizes, with each row representing a distinct model.

The rapid development and widespread application of GPT-based model have
led to the increased demand for resources, and the current GPT-based model
has been deployed on public clouds like Azure and Google Cloud for training and
inference, as GPT-based models are typically too large and resource-intensive
to be deployed on edge devices or small-scale hardware [8]. Therefore, they are
better suited for cloud-based deployments, which also makes the resource man-
agement for GPT-based model facing some specific challenges. In order to sum-
marize these challenges and propose corresponding solutions, in this section, we
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Table 1: Parameters of Mainstream GPT-based Models [23]

Model Research Teams Release Date Size

GPT-4 OpenAI 14-Mar-23 1760B
GPT-3 OpenAI 28-May-20 175B

PanGu-α Pengcheng Laboratory 26-Apr-21 207B
GLM ZhiPuAI 17-Mar-22 130B
Yi-1.5 01-ai May-24 34B
Llama3 Meta Llama 18-April-24 70B
Claude2 Anthropic 11-July-22 52B

OPT-175B Meta 3-May-22 175B
PaLM Google Apr-22 540B

ERNIE Bot Baidu 14-Mar-23 17B
MT-NLG Microsoft and NVIDIA 11-Oct-21 530B
Gopher DeepMind 8-Dec-21 280B
CPM-2 Beijing Academy of Artificial Intelligence Jun-21 198B

GPT-Neo-X-20B EleutherAI Apr-22 20B

will identify the unique characteristics of resource management for GPT-based
models and establish evaluation metrics for this specific domain.

1.1 Unique Characteristics of Resource Management for GPT-based
Model

Through extensive research and compared with traditional applications, we iden-
tify the following unique characteristics of resource management for GPT-based
model:

Large-scale computational demands due to huge amount of param-
eters and fine-tuning: The GPT-based model typically consists of billions of
parameters, necessitating a substantial amount of computational resources dur-
ing both training and inference processes [4]. Training GPT-based models typ-
ically requires specialized hardware such as Graphics Processing Units (GPUs)
or Tensor Processing Units (TPUs) due to the sheer number of calculations in-
volved. In addition, fine-tuning a pre-trained GPT-based model on a specific task
requires additional compute resources, as the model needs to adapt to the task
through further training [7]. This complexity makes resource management more
intricate, requiring efficient allocation and utilization of computational resources
to ensure the model operates efficiently.

High storage demands to support rapid data access: The GPT-based
model’s large parameter size requires significant storage space to accommodate
model parameters and intermediate computation results. Running these mod-
els can quickly consume all available memory on conventional hardware [17].
Therefore, resource management must consider how to effectively manage stor-
age resources to meet the model’s requirements while ensuring rapid data access
and processing.

High-speed network demands to enable efficient parallelism: Dur-
ing model training, the GPT-based model handles vast datasets and performs
complex computations and parameter optimization, demanding fast data trans-
mission and stable network connectivity [10]. In the inference phase, efficient
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network resource utilization directly impacts inference speed and response time.
The GPT-based model needs to generate outputs based on inputs and provide
results in real-time or near real-time conditions. Hence, network resources are
crucial for achieving fast responses and efficient inference.

Long training and inference processes than traditional AI models:
Traditional AI applications often have lower computational requirements and
faster inference time. However, due to the complexity and scale of the GPT-based
model, its training and inference processes typically require extended periods.
Resource management must consider how to maintain system stability and per-
formance over an extended duration while ensuring the rational allocation and
utilization of resources.

Dynamic resource demands from varied complexity of tasks: In prac-
tical applications, the resource requirements of the GPT-based model may vary
over time and across different tasks [6], e.g. machine translation, text summariza-
tion and question answering. These tasks can have dynamic resources demand
due to the different degree of complexity (e.g. difficulty of questions and ex-
pected output length). Resource management must possess dynamic adjustment
capabilities, allowing for the dynamic allocation of computational and storage
resources based on actual demands to adapt to different stages and tasks.

By understanding and addressing these unique characteristics, effective re-
source management strategies can be developed to ensure optimal performance
and utilization of the GPT-based model in various applications.

1.2 Evaluation Metrics for Resource Management for GPT-based
Model

In order to effectively evaluate the resource management of GPT-based model,
we can consider the following metrics:

Resource Utilization: It refers to the degree to which the model effectively
utilizes available resources during the training or inference process. For the GPT-
based model, resources primarily include computational resources (such as CPUs
and GPUs), storage resources (such as memory and disk space), and network
resources. Evaluating resource utilization involves ensuring that the model max-
imizes the use of available resources to improve efficiency and minimize resource
waste. This can be achieved through optimization of scheduling algorithms and
parallel computing techniques. Higher resource utilization indicates efficient uti-
lization of computational, storage, and network resources, enhancing overall sys-
tem performance.

Time Efficiency: It refers to the time taken by the model to complete a set
of given tasks (e.g. makespan metric used in traditional task scheduling). For
the GPT-based models, time efficiency includes both model training time and
inference time. During training, time efficiency focuses on the speed of param-
eter updates on a given dataset[18]. Training time efficiency can be improved
through optimization of scheduling algorithms, distributed training, and hard-
ware acceleration. During inference, time efficiency concerns the speed at which
the model processes input data and generates outputs. Inference time directly
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affects the real-time performance and responsiveness of the model in practical
applications. Techniques such as parallel computing, batch processing, and hard-
ware optimization can improve inference time efficiency. Higher time efficiency
means the model can complete training and inference tasks more quickly, thereby
increasing overall production efficiency.

Cost Efficiency: The cost of the GPT-based model mainly includes com-
putational cost, storage cost, and network transmission cost [20, 22]. Compu-
tational cost evaluation primarily considers the model’s complexity, workload,
and hardware used. Lower computational costs reduce resource investments for
specific tasks. Storage cost involves expenses for storing model parameters, in-
termediate results, and cached data, measured by the model’s size and storage
capacity. Lower storage costs reduce resource demands. Network transmission
cost covers expenses for data transmission during training or inference, includ-
ing model parameters and results. Lower network costs indicate efficient use of
network resources, reducing transmission time and bandwidth expenses.

This paper aims to highlight the specific challenges in resource management
for GPT-based models and propose corresponding solutions. Our work positions
as a review paper, compared with existing review, survey and taxonomy papers
related to surveying LLM model mechanisms [19, 21, 23], we focus on resource
management perspective for LLMs. To the best of our knowledge, our work
is the first review work to discuss the resource management issues for GPT-
based model in cloud environment. The main contributions of this paper are
as follows:

� We summarize the specific challenges in resource management for GPT-
based model and provide a detailed description of these challenges.

� We present a comprehensive and general resource management framework
for the GPT-based model that comprises seven different functional components.

� We propose and implement a machine learning (ML)-based method for re-
source profiling and prediction of LLM inference tasks, and validate its feasibility
through experiments.

2 Challenges in Resource Management for GPT-based
Model

By identifying the unique characteristics of resource management for GPT-based
model, we summarized the specific challenges in resource management for GPT-
based model deployed on clouds [5, 9, 15]. For a more visual representation, we
presented these specific challenges in Figure 2. We noted some main challenges
such as performance prediction and control, global manageability, resource het-
erogeneity, scalable resource management system, resource pricing strategies,
model reliability, model parallelism and data parallelism, and we will discuss the
details in the following sections.
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Fig. 2: Challenges in Resource Management for GPT-based Model

2.1 Performance Prediction and Control

The GPT-based model, constructed based on the Transformer [16] architecture,
has a large parameter size and complex structure [12]. This complexity leads
to significant computational requirements and the need for a large number of
parameters for training and inference. Different tasks typically have varying
complexities, resource demands, and performance expectations for the model.
Even under the same workload and resource configuration, the performance of
the model can be influenced by task characteristics and data properties. Addi-
tionally, different workloads and resource configurations can lead to variations
in resource allocation, data parallelism, and other aspects that influence perfor-
mance. These factors make it challenging to predict and control the behavior and
performance of the model under different workloads and resource configurations.

2.2 Global Manageability

Global manageability refers to effectively managing and coordinating resources,
including computational resources, storage resources, and network resources, in
large and complex cloud environments. In the context of GPT-based model ap-
plications, challenges in achieving global manageability primarily manifest in the
following aspects:

Resource scheduling and allocation: Given the massive computational,
storage, and network resource requirements of the GPT-based model, efficient
resource scheduling and allocation algorithms are needed. This includes dynamic
resource allocation across different data centers and geographical locations to
meet user demands and service-level agreements.

Resource monitoring and optimization: Achieving global manageabil-
ity requires real-time monitoring of resource usage, performance metrics, and
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health status, coupled with automated techniques for resource adjustments and
optimization. Such monitoring mechanisms help maintain efficient resource uti-
lization, ensure load balancing, and optimize performance bottlenecks, thereby
enhancing overall system performance.

2.3 Resource Heterogeneity

Resource heterogeneity refers to the existence of various types or characteristics
of resources within the same system or environment. These resources can include
computational resources (such as CPUs, GPUs, and TPUs), storage resources
(such as disks and solid-state drives), network resources (such as bandwidth and
latency), and others. Resource heterogeneity implies differences in performance,
scale, power consumption, and cost among these resources. For the GPT-based
model, resource heterogeneity poses the following challenges:

Resource dependencies: It refers to the interdependencies and associa-
tions among different types of resources. In resource management, it is neces-
sary to consider these dependencies and employ suitable resource allocation al-
gorithms to optimize the synergistic effects among resources, thereby improving
overall system performance. For example, in the GPT-based model, the provi-
sioning of computational resources must match the capacity of storage resources
and network bandwidth to ensure efficient data transmission and smooth model
operation. By fully considering resource dependencies, resource allocation and
utilization can be optimized, maximizing the system’s potential.

Resource interoperability: Different types of resources are often pro-
vided by different vendors and technologies, necessitating addressing the chal-
lenge of resource interoperability. This involves establishing standards and pro-
tocols to ensure seamless integration and interaction among different types of re-
sources, improving system compatibility and interoperability. Additionally, data
and model transfer and sharing across different resources need to be addressed
to enable collaborative work across resources.

2.4 Scalable Resource Management System

With the development of the GPT-based model, its scale has increased signifi-
cantly, demanding huge computational resources. Moreover, as the GPT-based
model is widely applied, data centers face concurrent requests and high through-
put demands. Therefore, a highly scalable computing and storage infrastructure
is required to support model execution and handle massive data. Furthermore,
the resource management system must scale across multiple dimensions to han-
dle resource management in large-scale data centers. The GPT-based model
requires efficient management and allocation of computational, storage, and net-
work resources, as well as task scheduling, to meet the training and inference
requirements of the model. Additionally, the resource management system needs
to dynamically allocate and flexibly expand resources to accommodate different
application scenarios with varying scales and complexities. These requirements
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pose important challenges to the resource management system for the GPT-
based model.

2.5 Resource Pricing Strategies

Resource pricing strategies are crucial for the GPT-based model as they directly
impact resource utilization, user satisfaction, and vendor profitability. However,
several challenges exist in resource pricing strategies.

Firstly, accurately determining resource costs is a challenge. Resource costs
are influenced by factors such as the vendor, geographical location, and usage
volume. Therefore, a comprehensive consideration of these factors is required to
ensure that resource pricing covers actual costs and attracts user adoption.

Secondly, balancing the supply-demand relationship is another challenge.
Vendors aim to obtain revenues through resource sales while ensuring stable
provisioning, while users seek resources at reasonable prices and sufficient sup-
port during peak demand. Therefore, resource pricing strategies need to strike a
balance between supply and demand, meeting user needs while ensuring vendor
profitability.

Additionally, achieving fair resource allocation and pricing is also a challenge.
In multi-user environments, resources must be allocated on-demand to different
users and priced based on usage. Given the variations in user demands and usage
patterns, assuring fair resource allocation and pricing becomes a complicated
problem.

2.6 Model Reliability

Due to the complexity of the GPT-based model, such as its large scale and
long training processes, model failures during operation are inevitable. To en-
sure model reliability, systems must implement fault detection and fault toler-
ance mechanisms to handle resource failures or interruptions promptly. Fault
detection mechanisms proactively identify potential system failures by monitor-
ing model performance metrics, resource utilization, and other key parameters.
Fault tolerance mechanisms include data backup and recovery strategies to en-
sure data integrity and service continuity. Data backup strategies involve regular
backups of the GPT-based model parameters, training data, and other related
data to ensure available backup data for recovery in case of failures. Recovery
strategies ensure quick system recovery and maintain the continuity of user ex-
perience after failures or interruptions. Through these mechanisms, the system
can rapidly detect and respond to faults, reducing the risks of system downtime
and data loss, thus ensuring the reliability of the GPT-based model.

2.7 Model Parallelism and Data Parallelism

Parallelism mainly consist of model parallelism and dara parallelism. In model
parallelism, challenges primarily include:
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Model partitioning: The GPT-based model typically has a large scale,
consisting of billions or even hundreds of billions of parameters. Partitioning
such a massive GPT-based model into sub-models suitable for parallel processing
is a challenge. Model partitioning needs to consider the dependencies within
the model structure and the communication requirements among parameters to
ensure correctness and efficiency in parallel computation.

Synchronization and communication overhead: Synchronization and
communication are required among sub-models on different devices to ensure
the transfer and aggregation of gradient information during training and enable
effective parameter updates. Synchronization and communication operations can
introduce additional computational and communication overhead, impacting the
efficiency and performance of parallel computation.

Load balancing: Proper distribution of computational load is crucial for
model parallelism to ensure balanced computation across devices. Load imbal-
ance can result in computational resource waste and decreased efficiency.

In data parallelism, challenges mainly include:

Data partitioning and distribution: The GPT-based model has massive
training data, and partitioning the data into multiple parts and distributing
them to different devices is a challenge. Data partitioning needs to consider
data balance and distribution efficiency to ensure the quality and performance
of parallel training.

Data synchronization and consistency: In data parallel computation,
model synchronization and consistency are crucial to ensure accurate parame-
ter updates. Efficient data synchronization mechanisms are key to ensuring the
effectiveness of parallel training.

Training speed limitations: In data parallel computation, the training
speed may be limited by the slowest device. If some devices have slower compu-
tation speeds, it will affect the overall training efficiency and speed.

3 Resource Management Framework for GPT-based
Model

In response to the specific challenges faced by the GPT-based model and based
on the characteristics of resource management for GPT-based model, we pro-
pose a comprehensive resource management framework. This framework aims
to effectively manage critical resources such as computational resources, storage
resources, and network bandwidth required by the GPT-based model, thereby
improving overall model efficiency and ensuring model reliability and service
quality. Figure 3 demonstrates our resource management framework for the
GPT-based model. The resource management framework is divided into several
key components, including Resource Monitor, GPT Task Scheduler, Resource
Allocator, GPT Task Profiler, Synchronizer, QoS Manager, and Resource
Adaptor. The following will provide detailed introductions for each of these com-
ponents.
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Fig. 3: Resource Management Framework for GPT-based Model

Resource Monitor: It is responsible for real-time monitoring of computa-
tional resources (e.g. CPU, GPU, memory), network resources (e.g. bandwidth
utilization, network latency), and storage resources (e.g. disk) in the system. It
collects and analyzes real-time resource usage and performance data, providing
real-time feedback and reports to support task scheduling and resource alloca-
tion decisions. It also offers visual representations to show resource usage and
performance metric trends.

GPT Task Scheduler: This component handles task scheduling based on
requests from the GPT task queue. It considers task priority, resource require-
ments, timeliness, and related constraints to select suitable GPT-based model
instances for task scheduling. By employing appropriate scheduling algorithms,
it determines the execution order of tasks and assigns them to available GPT
model instances.

Resource Allocator: It dynamically manages system resources based on
task resource requirements, system resource availability, and load conditions. It
employs intelligent resource allocation strategies to meet the execution needs of
tasks. Additionally, the Resource Allocator may utilize resource prediction and
load forecasting models to predict task resource requirements and system load
conditions, enabling more accurate resource allocation and adjustments.

GPT Task Profiler: This component extracts and analyzes task attributes,
resource requirements, and QoS needs of GPT tasks for enhanced understanding
and handling. It identifies task types, input data features, and requirements, en-
abling customized parameter settings and providing essential references for data
processing and answer generation. It also evaluates computational and storage
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resources needed for accurate resource allocation and scheduling. Additionally,
it identifies QoS requirements like response time, text generation speed, and
accuracy, transferring them to the QoS Manager for effective evaluation and
management.

Synchronizer: The Synchronizer facilitates efficient resource allocation and
smooth execution of GPT tasks using distributed consistency protocols. It man-
ages distributed locks to prevent resource conflicts, ensures consistent task states
across nodes, and handles transactions to maintain atomic and consistent op-
erations with rollback and recovery capabilities. Additionally, it manages fault
recovery by detecting node failures and network issues, implementing measures
like re-election or resource reallocation to ensure system stability and availability.

QoS Manager: It assesses and manages Quality of Service (QoS) require-
ments for GPT tasks. It evaluates and quantifies QoS needs such as response
time, processing time, and accuracy from the GPT Task Profiler, devises opti-
mization strategies based on these requirements and system resource constraints,
and guides the GPT Task Scheduler and Resource Allocator. It also monitors
real-time performance metrics, comparing them against QoS requirements, and
initiates resource adjustments and optimizations to maintain desired QoS levels.

Resource Adaptor: This component is responsible for dynamic resource
scaling based on system load, GPT task demands, and resource usage. It uses
adaptive algorithms and prediction models to automatically adjust resource al-
location for GPT tasks, achieving dynamic resource expansion and contraction.
When the system load or task demands increase, the Resource Adaptor auto-
matically scales up resources to meet the requirements and maintain system
performance. Conversely, during low system load or reduced task demands, it
timely scales down resources to reduce waste.

4 Task Profiling and Resource Prediction

As it is difficult to address all the aforementioned challenges in a single paper,
in this work, we focus on addressing the challenges for GPT tasks profiling by
precisely profiling the resources utilized by each task, which can be developed in
the Task Profiler module in Figure 3. Our approach leverages K-Prototypes [1]
clustering to categorize GPT tasks based on their resource consumption patterns.
Based on clustering, we employ multiple machine learning algorithms for training
and prediction. This method facilitates a detailed and accurate profiling of GPT
tasks, thereby optimizing resource allocation and improving scheduling efficiency.
This approach consists of 6 steps as shown in Fig 4 and details are as follows:

4.1 Task Design and Pre-profiling

Designing reasoning tasks is a critical step in ensuring the effectiveness and
data diversity of profiling tasks. To fully demonstrate the performance of the
ChatGLM2-6B model in answering various questions, we design questions based
on their length, type, and language to ensure comprehensiveness and diversity.
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Fig. 4: Task profiling and resource prediction details

We created 182 questions ranging from 5 to 431 tokens in length1. The types
of questions include text generation, summarization, translation, common sense
Q&A, mathematics and logic, coding skills, and specialized fields. The questions
are in both Chinese and English. Figure 5, Figure 6, and Figure 7 demonstrate
the distribution of question types, languages, and lengths, respectively.

Through the question design, we can ensure the diversity and coverage of
the selected questions, providing a more comprehensive and accurate analysis
of GPT task resource usage. This detailed task profiling improves the model’s
overall performance across different tasks. Thus, our approach not only offers
a fine-grained analysis of GPT task resource consumption but also ensures the
comprehensiveness and representativeness of the analysis through diverse ques-
tion design, providing a solid foundation for task resource profiling and predic-
tion.

Fig. 5: Type distribution of questions Fig. 6: Language distribution of
questions

It is important to note that the length of a question is not determined by
its text length but by converting the text of the question into a sequence of to-
kens (i.e., tokenization) and counting these tokens. Tokenization, the process of
splitting continuous text into meaningful lexical units, is a crucial step in LLMs
because the model needs to understand the basic units of the input text, known

1 Detailed information of our designed questions can be found at:
https://github.com/HYIUYOU/Resource-Management-for-GPT-based-Model-
Deployed-on-Clouds
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Fig. 7: Length distribution of questions

as tokens [14, 16]. Tokenization allows the model to better comprehend and
process language. For instance, in text generation, the model generates coher-
ent sentences or paragraphs by producing reasonable token combinations based
on learned tokenization rules and language patterns. In LLMs, tokenization is
performed by tokenizers, and different models have their specific tokenization
methods. Using the number of tokens as a measure of question length aligns
better with the model’s inference mechanism, potentially allowing for more ac-
curate resource usage prediction. After designing the questions, we store the
length, type, and language data of each question in a CSV file for future use,
facilitating preliminary analysis.

4.2 Data Collection

During data collection, two modules are utilized: one for model deployment
providing inference services, and another for monitoring resource usage. Initially,
the monitoring module executes the ”nvidia-smi” command every 0.5 seconds to
retrieve GPU utilization and memory usage, recording the data in a CSV file.
Subsequently, the model deployment module loads the model, allowing real-time
interactions. Pre-prepared questions are sent to the model, and responses are
recorded. Each question is repeated three times to remove the randomness.

4.3 Data Preprocessing

During the data collection process, we record the changes in GPU utilization
and RAM usage during the time of each task’s inference phase. Additionally, to
facilitate subsequent model training, it is necessary to extract key metrics from
this data. To accomplish this, we wrote a Python program to process the data.

The data preprocessing workflow involves generating file paths with Python,
reading and processing CSV data with Pandas toolkit, extracting and calculat-
ing resource usage metrics, storing these metrics in a list, creating a DataFrame,
and saving it to a CSV file for further analysis. Through these steps, we success-
fully extracted a series of key metrics (e.g. maximum GPU utilization) from the
original telemetry data, laying the foundation for subsequent analysis.
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4.4 Cluster Analysis

The K-Prototypes clustering algorithm is designed for datasets that include both
numeric and categorical features. It processes these different types of data by
defining separate distance functions for numeric and categorical features. This
algorithm integrates the concepts of K-Means (for numeric features) and K-
Modes (for categorical features). The key idea is to partition the data points
in a dataset into K clusters based on a certain similarity measure, maximizing
the similarity between each data point and its respective cluster center, while
minimizing the similarity between data points in different clusters.

The algorithm achieves its objective by minimizing the cost function E(U,Q),
where U is an assignment matrix with elements uij indicating the degree to which
data point xi belongs to cluster Qj , and Q is the set of cluster centroids. The
cost function is defined as the sum of the weighted distances from all data points
to their nearest cluster centroid, as illustrated in Equation (1):

E(U,Q) =

n∑
i=1

k∑
j=1

uijd(xi, Qj), (1)

where n represents the number of data points, k denotes the number of clusters,
uij signifies the membership degree of data point xi to cluster Qj , and d(xi, Qj)
indicates the distance between data point xi and cluster centroid Qj .

The dissimilarity measure d(xi, Qj) is computed based on the attributes of
data point xi and cluster centroid Qj . For numerical attributes, the squared
Euclidean distance is utilized, as described in Equation (2):

d(xil, qjl) = (xil − qjl)
2, (2)

where, xil is the value of the l-th numerical attribute of data point xi, and
qjl is the value of the l-th numerical attribute of cluster centroid Qj .

For categorical attributes, a weighted simple matching distance is employed,
as expressed in Equation (3):

d(xil, qjl) = µ · s(xil, qjl), (3)

In this equation, µ represents the weight of the categorical attribute, and
s(xil, qjl) is an indicator function that equals 0 when the attribute values xil

and qjl are identical, and 1 otherwise.
These distance measures enable the algorithm to effectively compute the dis-

tances between data points and cluster centroids, thereby facilitating the clus-
tering process.

The K-Prototypes clustering algorithm excels in handling mixed data types
(numerical and categorical), offers flexibility in distance measures (e.g., Eu-
clidean or Manhattan), and is computationally efficient, making it ideal for large
datasets. Its interpretability also reveals inherent data structures and patterns.

In our clustering analysis, we integrate question attributes (length, type,
language) with resource usage metrics (average and maximum GPU utilization,
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RAM usage, total inference time). We apply the K-Prototypes algorithm to
cluster inference tasks, followed by using a machine learning model (e.g., Random
Forest) within each cluster to predict resource usage. This approach enhances
prediction accuracy, generalizability, reduces modeling complexity, and mitigates
noise sensitivity, better adapting to practical applications.

Using K-Prototypes, we have divided 182 data sets into 6 clusters. The num-
ber of samples in each cluster is shown in Figure 8, and the proportion of samples
from each cluster within the total dataset is displayed in Figure 9.

Fig. 8: Clustering results
Fig. 9: Cluster sample number dis-
tribution

4.5 Model Training and Resource Prediction

We used three ML-based algorithms for training and prediction:
1. Random Forest (RF) [1]: It is an ensemble learning method that con-

structs multiple decision trees during training and outputs the mode of the
classes (classification) or mean prediction (regression) of the individual trees.

The final prediction ŷ is given by ŷ = 1
T

∑T
t=1 ht(x), where T is the number of

trees, and ht(x) is the prediction of the t-th tree. It is particularly robust to
overfitting due to the averaging of multiple trees, can handle high-dimensional
data effectively, and is relatively easy to interpret.

2. Gradient Boosting (GB) [1]: It builds models sequentially, with each
new model correcting the errors of the previous ones. The model updates are
given by Fm(x) = Fm−1(x) + α · hm(x), where Fm(x) is the boosted model at
iterationm, α is the learning rate, and hm(x) is the new model fit to the residuals.
This method is known for its high prediction accuracy, ability to handle complex
data patterns, and flexibility in tuning through hyperparameters.

3. LightGBM (LGBM) [1]: It is an efficient implementation of the GB
framework using tree-based learning algorithms. It is designed to be highly effi-
cient and scalable for large datasets. The optimization objective can be formu-
lated as minimize

∑n
i=1 l(yi, ŷi)+Ω(T ), where l is the loss function, yi is the true

value, ŷi is the predicted value, and Ω(T ) is the regularization term of the tree
structure. LGBM’s advantages include faster training speed, lower memory us-
age, and better accuracy due to its novel techniques like gradient-based one-side
sampling and exclusive feature bundling.
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In the model training and resource prediction phase, each sample within a
cluster is split into a training set and a test set, with 70% of the data used for
training and 30% for testing. We then perform individual predictions for four
resource usage metrics: maximum GPU utilization, average GPU utilization,
maximum Memory usage, and total inference time. For each test sample in the
cluster, we calculate and record two metrics widely used: Relative Error (RE)
and Mean Squared Error (MSE).

RE is defined as the proportion of the difference between the predicted (ŷ)
and actual (y) values relative to the actual value, given by:

RE =
|y − ŷ|
|y|

. (4)

MSE is the average of the squared differences between the predicted and
actual values, formulated as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (5)

4.6 Evaluations

Given the diversity and data sufficiency of samples in Clusters 0, 3, and 5, we
record two evaluation metrics (RE and MSE) for these clusters with three ML-
based approaches as introduced in Section 4.5. To visually analyze the prediction
results, we also plot the cumulative distribution function (CDF) of RE for test
sample predictions in each cluster. In addition, we summarize the MSE of the
predicted test samples in each cluster in Table 2.

Table 2: MSE for different ML-based approaches and clusters

Cluster
Max GPU utilization Avg GPU utilization Max memory used Total inference time

GB LGBM RF GB LGBM RF GB LGBM RF GB LGBM RF

0 32.94 21.17 40.07 56.3 73.51 73.56 21.62 68.52 38.58 4.97 4.86 5.25
3 58.6 261.09 78.47 110.62 297.51 114.18 64.92 88.33 59.1 12.63 19.82 11.12
5 5.47 2.41 5.59 78.55 114.4 91.87 11.62 21.57 11.3 5.81 8.21 6.03

The results are analyzed as follows:
Cluster 0: Figure 10 illustrates the performance of various models. For

maximum GPU utilization predictions, over 80% of the samples achieved a RE
below 10%, with LGBM excelling at less than 5%. When predicting average
GPU utilization, more than 80% of the predictions had a RE under 20%, with
GB performing best at under 15%. In maximum memory usage predictions, all
models achieve good performance, as every prediction had a RE below 0.12%,
with GB leading at just 0.04%. Lastly, for total inference time predictions, the
models performed acceptably, with over 80% of predictions within a 30% RE
and similar performance across all models.
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(a) (b) (c) (d)

Fig. 10: CDF comparison of RE for Cluster 0. (a) maximum GPU utilization. (b)
average GPU utilization. (c) maximum memory used. (d) total inference time.

Cluster 3: As shown in Figure 11, over 80% of maximum GPU utilization
predictions had a RE within 30%, with LGBM underperforming. For average
GPU utilization, more than 80% of the predictions had a RE up to 100%, again
with LGBM showing poor performance. However, in maximum Memory usage
predictions, all models performed admirably, maintaining a RE under 0.75%.
For Total Inference Time, the models’ performance was acceptable, with both
RF and GB maintaining a RE within 50%, while LGBM lagged at 60%.

(a) (b) (c) (d)

Fig. 11: CDF comparison of RE for Cluster 3. (a) maximum GPU utilization. (b)
average GPU utilization. (c) maximum memory used. (d) total inference time.

Cluster 5: According to Figure 12, approximately 80% of maximum GPU
utilization predictions had a RE within 3%. In predicting average GPU utiliza-
tion, over 80% of the samples maintained a RE below 20%, with all models show-
ing similar performance. For maximum Memory usage, each model performed
exceptionally well, with over 80% of predictions within a 0.05% RE, and GB
and RF performing slightly better at 0.03%. Regarding Total Inference Time
predictions, the models performed adequately, with about 80% of predictions
within a 40% RE, where GB and LGBM showed superior performance.

To summarize, different models exhibited varying performance across differ-
ent clusters and prediction metrics. Overall, the GB model demonstrated the best
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(a) (b) (c) (d)

Fig. 12: CDF comparison of RE for Cluster 5. (a) maximum GPU utilization. (b)
average GPU utilization. (c) maximum memory used. (d) total inference time.

and most stable performance. The RF model followed, showing stable results.
The LGBM model, however, showed the least stability, particularly performing
poorly in predicting GPU utilization in cluster 3. The results have shown the
feasibility to use these approaches for task resource profiling.

5 Conclusions and Future Research Directions

In this paper, we introduced popular GPT-based models, identified unique char-
acteristics of resource management for these models, and discussed evaluation
metrics. We analyzed specific challenges and proposed a comprehensive resource
management framework. In addition, we implemented and verified resource char-
acterization and prediction methods for LLM tasks. Future research directions
can be explored to highlight potential areas in resource management for GPT-
based models. We summarize several future research directions for resource man-
agement for GPT-based model as follows:

Specialized Hardware for GPT-based Models: As GPT models scale
up, their computational demands rise. Future research will focus on developing
high-performance hardware. Manufacturers can create specialized AI chips (e.g.,
GPUs, FPGAs) optimized for GPT characteristics to support large-scale parallel
computations.

Benchmarks for Performance Evaluation: Currently, there is a lack of
standardized benchmarks for resource management for GPT-based model, and
existing evaluation metrics are not comprehensive. Future efforts should focus
on establishing more comprehensive test suites to evaluate resource management
from multiple dimensions.

Resource Utilization Maximization: Future research needs to investigate
more efficient resource management techniques to maximize the utilization of re-
sources by the GPT-based model. Cloud data centers suffer from the issue in low
resource utilization. This can be achieved through dynamic resource allocation,
resource sharing, and parallel computing algorithms designed for GPT-based
models.
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Scheduling Algorithms and Metrics: Future research should develop
specialized scheduling and optimization algorithms for GPT-based models, con-
sidering task priorities, resource constraints, and optimization metrics. These
algorithms should aim to improve resource allocation and task scheduling. Eval-
uation metrics like throughput, response time, and task completion rate should
be used to assess algorithm effectiveness. Additionally, new metrics suitable for
GPT-based resource provisioning should be proposed.

Security Management: With the widespread use of GPT-based models,
security concerns in resource management are rising. Future research should
focus on: 1) Data Privacy : Protect user data during training and inference to
prevent breaches. 2) Model Security : Safeguard model integrity and reliability
from tampering and attacks. 3) System Security : Implement measures to protect
computational resources from abuse, ensuring reliable resource management.
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