
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

StatuScale: Status-aware and Elastic Scaling Strategy for
Microservice Applications

LINFENG WEN, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of
Chinese Academy of Sciences, China
MINXIAN XU, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
SUKHPAL SINGH GILL, Queen Mary University of London, UK
MUHAMMAD HAFIZHUDDIN HILMAN, Universitas Indonesia, Indonesia
SATISH NARAYANA SRIRAMA, University of Hyderabad, India
KEJIANG YE, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
CHENGZHONG XU, State Key Lab of IOTSC, University of Macau, China

Microservice architecture has transformed traditional monolithic applications into lightweight components.
Scaling these lightweight microservices is more efficient than scaling servers. However, scaling microservices
still faces the challenges resulted from the unexpected spikes or bursts of requests, which are difficult to
detect and can degrade performance instantaneously. To address this challenge and ensure the performance of
microservice-based applications, we propose a status-aware and elastic scaling framework called StatuScale,
which is based on load status detector that can select appropriate elastic scaling strategies for differentiated
resource scheduling in vertical scaling. Additionally, StatuScale employs a horizontal scaling controller
that utilizes comprehensive evaluation and resource reduction to manage the number of replicas for each
microservice. We also present a novel metric named correlation factor to evaluate the resource usage efficiency.
Finally, we use Kubernetes, an open-source container orchestration and management platform, and realistic
traces from Alibaba to validate our approach. The experimental results have demonstrated that the proposed
framework can reduce the average response time in the Sock-Shop application by 8.59% to 12.34%, and in the
Hotel-Reservation application by 7.30% to 11.97%, decrease service level objective violations, and offer better
performance in resource usage compared to baselines.

CCS Concepts: • Networks → Cloud computing; • Computing methodologies → Distributed algo-
rithms.

Additional Key Words and Phrases: Cloud computing, Load prediction, Microservices, Elastic scaling, Control
theory

ACM Reference Format:
Linfeng Wen, Minxian Xu, Sukhpal Singh Gill, Muhammad Hafizhuddin Hilman, Satish Narayana Srirama,
Kejiang Ye, and Chengzhong Xu. 2024. StatuScale: Status-aware and Elastic Scaling Strategy for Microservice
Applications. ACM Trans. Autonom. Adapt. Syst. 0, 0, Article 0 (2024), 26 pages.

Authors’ addresses: Linfeng Wen, Minxian Xu (Corresponding Author), Kejiang Ye, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong,
China, 518055; emails: lf.wen@siat.ac.cn, mx.xu@siat.ac.cn, kj.ye@siat.ac.cn; Sukhpal Singh Gill, Queen Mary University
of London, UK; email: s.s.gill@qmul.ac.uk; Muhammad Hafizhuddin Hilman, Universitas Indonesia, Indonesia; email:
muhammad.hilman@ui.ac.id; Satish Narayana Srirama, University of Hyderabad, India; email: satish.srirama@uohyd.ac.in;
Chengzhong Xu, State Key Lab of IOTSC, University of Macau, Avenida da Universidade, Taipa, Macau, China, 999078;
email: czxu@um.edu.mo.

© 2024 .
1556-4665/2024/0-ART0 $0

0, 0, 0. , 2024.

xiane
高亮

xiane
高亮

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

0:2 Wen et al.

1 INTRODUCTION
Microservices architecture has emerged as a revolutionary approach in building large and complex
software systems [12, 22]. This architecture has gained immense popularity in recent years due
to its ability to deliver flexibility, scalability, and resilience to software applications [2, 14]. In
microservices architecture, applications are decomposed into smaller, independently deployable
services that communicate with each other through Application Programming Interfaces (APIs) [44].
Each microservice is responsible for a specific business function and can be developed, deployed,
and maintained independently, making it easier to scale and manage the system [36].

However, the prevalent adoption of microservices also presents its own unique set of challenges.
One of the significant challenges is dealing with sudden bursts of traffic or load [5]. Bursty load
occurs when there is a sudden surge in traffic or requests to a microservice. This surge could be due
to a variety of factors, such as a sudden marketing campaign, a popular event, or even a software
glitch [24]. Regardless of the cause, the microservice must be able to handle the increased traffic
without experiencing downtime or degradation in performance [27]. This can be a daunting task
for microservices, particularly when the burst of traffic is short-lived and unexpected [20]. In such
situations, microservices need to allocate sufficient resources quickly and efficiently to meet the
increased demand, while also ensuring that the system remains stable and available to users.
To address the above challenges, we propose StatuScale, a status-aware and elastic scaling

framework for microservices. It aims to handle load bursts by predicting the occurrence of workload
spikes in a fine-grained manner and ensuring Quality of Service (QoS) at the target level.

StatuScale utilizes both vertical and horizontal scaling strategies to achieve fine-grained resource
management. In vertical scaling, StatuScale utilizes a resistance line within the load status detector
(similar to a trendline in the business market) to identify whether the current status of a microservice
is consistently maintained or not. It then selects the appropriate elastic scaling strategy accordingly.
When the load is stable (e.g., below the resistance line), proactive resource scaling techniques,
such as machine learning-based methods, can be employed. However, when the microservice load
is unstable (e.g., above the resistance line), a conservative resource scaling approach is adopted
to ensure that service level objectives (SLOs) are not violated. This involves using an Adaptive
Proportional-Integral-Derivative (A-PID) controller to maintain resource utilization at the target
level. For horizontal scaling, a mechanism based on a comprehensive assessment and resource
reduction is designed, triggering horizontal scaling and adjustments when the cumulative value or
individual value exceeds the specified threshold. Additionally, a cooling-off period is configured
within the horizontal scaling strategy to prevent frequent scaling due to workload fluctuations.

To demonstrate the effectiveness of StatuScale, we conduct experiments based on Alibaba’s
realistic traces, and deploy StatuScale on Kubernetes [9] platform with two typical microservice-
based applications (Sock-Shop1 and Hotel-Reservation [12]). The results demonstrate that our
proposed approach outperforms three state-of-the-art baselines in terms of average response time
(8.59% to 12.34% improvement in Sock-Shop and 7.30% to 11.97% in Hotel-Reservation) while
maintaining resource usage at a stable status.

The main contributions of this work are:
• We present StatuScale, a status-aware and elastic scaling framework to handle load bursts
and scale resources of microservices to reduce SLO violations.

• We propose a resistance line and a support line in vertical scaling to detect whether the load
is currently in a relatively stable status, and an extended method based on comprehensive
evaluation and resource reduction in horizontal scaling. They work collaborate to effectively
handle sudden load spikes and maintain resource utilization at the target level.

1https://microservices-demo.github.io/

0, 0, 0. , 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:3

• We evaluate the effectiveness and availability of several baselines via realistic trace and
testbed. In terms of traditional and novel metrics (correlation factor), the results have shown
that significant performance improvement can be achieved by StatuScale.

The rest of the work is structured as follows: Section 2 discusses the related work in elastic
scaling for cloud and microservice applications. Section 3 presents the elastic scaling algorithm of
StatuScale. Section 4 demonstrates the performance evaluations of the proposed approach. Finally,
Section 5 concludes the paper and highlights promising future directions.

2 RELATEDWORK
Elastic scaling in managing cloud applications and microservices is a popular and well-researched
topic. The existing elastic scaling strategies can be mainly divided into three buckets: i) threshold-
based, ii) control theory-based and iii) learning-based.

2.1 Threshold-based Elastic Scaling Strategies
Threshold-based elastic scaling strategies predefine suitable target thresholds (e.g. utilization) to
trigger scaling actions, such as HPA and VPA built into Kubernetes [9], which can be applied to the
workloads without apparent trends and difficult for prediction. This category of scaling has been
widely adopted in both academia and industry.

Wong et al. [21] proposed Hyscale to simultaneously achieve vertical scaling and horizontal
scaling to ensure high availability. Xu et al. [42] proposed an algorithm based on resource utilization
threshold for adjusting the number of pods for non-periodic loads, and defined a cooling-off period
to ensure that replica removal operations are not executed within this time frame, effectively
addressing changes in system load. Liu et al. [23] proposed a fuzzy logic-based method called Fuzzy
Auto-Scaler, which can automatically and adaptively adjust the thresholds for web applications.
Rossi et al. [33] proposed an auto-scaling strategy based on dynamic multi-metric thresholds,
utilizing reinforcement learning (RL) to autonomously update scaling thresholds to meet the per-
formance requirements of cloud-native applications. Pozdniakova et al. [31] enhances Kubernetes’
HPA by proposing a method to optimize utilization thresholds. By dynamically adjusting thresholds,
it ensures performance-based SLO compliance with minimal resource over-provisioning.

The advantages of using threshold-based elastic scaling strategy are their simplicity and efficiency
in making scaling decisions. However, due to the limited capability to response to environment
changes, threshold-based approach suffers from low resource utilization and SLO violations. For
instance, the static thresholds in [21, 42] make it difficult to adapt to highly variable workloads.
The thresholds in [23] only set limited number of thresholds manually and cannot achieve fine-
grained resource configuration. [31, 33] requires a lot of trial and error to explore the optimal
threshold, leading to performance degradation, and workload bursts cannot be handled efficiently
via threshold-based approach with predefined scaling actions.

2.2 Control Theory-based Elastic Scaling Strategy
Control theory-based elasticity scaling strategy is mainly based on the control system theory
[25, 26], which aims to monitor and adjust the system’s load through feedback control mechanism,
thus achieving the system’s elasticity scaling. Control theory is a mathematical model used to
describe the behavior and control of physical systems. In the control theory based elasticity scaling
strategy, its model is used to establish a control system, with the load as input and the system
resources as output, to dynamically adjust the system resources using the control system, in order
to adapt to the environmental changes.

0, 0, 0. , 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

0:4 Wen et al.

Baarzi et al. [4] proposed SHOWAR, utilizing the three-sigma empirical rule to configure resources
and make the decision on horizontal scaling using PID controller. Baresi et al. [6] proposed an
auto-scaling technique based on a grey-box discrete-time feedback controller. Bi et al. [8] proposed a
dynamic microservices framework based on the mean absolute percentage error model. It monitors
runtime service data, detects anomalies, and proactively adjusts services using a dynamic window-
based elasticity method along with fast scaling and slow shrinking strategies. Hossen et al. [16]
proposed PEMA, a lightweight microservice resource manager that used feedback adjustment to
find effective resource allocation strategy. Rzadca et al. [34] uses Autopilot to configure resources
automatically, it utilizes machine learning and exponential smoothing strategy for fine-tuning,
while employing meta-algorithms to adjust parameters.

Elastic scaling strategies based on control theory can dynamically adjust system resources to
adapt to changes in workload, making the system more flexible and resilient. However, there
are several issues associated with control theory based elastic scaling strategies. Firstly, such as
[4, 6, 8, 16], they typically utilize feedback mechanisms to adjust resource allocation but often
lack the understanding and learning capabilities of application load characteristics. As a result,
they may not effectively adapt to specific load patterns of applications. Moreover, such as [34],
parameter tuning is also challenging, as control parameters need to be adjusted based on the
characteristics of the application, which may require significant time and resources. Lastly, such as
[16], the feedback cycle is long, as sufficient data must be obtained from the system in order to
make informed decisions, which can take long time and it leads to delays that undermine system
performance.

2.3 Learning-based Elastic Scaling Strategies
For the cloud applications and microservices with clear periodical trends, a learning-based elastic
scaling strategy can be used to characterize historical load data, predict future workloads, and
analyze resource requirements for timely resource allocation. Podolskiy et al. [28] extensively
compared predictive models for adaptive cloud applications, including ARIMA, exponential smooth-
ing, singular spectrum analysis, support vector regression, and linear regression. Ahamed et al.
[1] explores proactive resource management in cloud services using deep learning for workloads
prediction, various deep learning models are evaluated using real-world workload data. However,
there is no one prediction method that is suitable for all time series [46], it is necessary to enhance
their adaptability and online learning capabilities.
Xu et al. [41] proposed esDNN for cloud load prediction, combining multivariate time series

prediction and sliding window to improve prediction accuracy. Podolskiy et al. [29] proposed a four-
step method, which includes data collection, outlier handling, SLO prediction model establishment,
and resource constraint derivation, to effectively address SLO-compatible resource allocation issues.
Wang et al. [39] proposed DeepScaling, which consists of three innovative components: workload
prediction using Spatio-temporal Graph Neural Network, CPU utilization estimation using Deep
Neural Network, and an adaptive auto-scaling policy based on an improved Deep Q Network. Qiu
et al. [32] proposed a fine-grained resource management framework by leveraging support vector
machines to detect SLO violations and make decisions to mitigate the violations with reinforcement
learning. Zhang et al. [43] proposed Sinan, which consists of a Convolutional Neural Network
(CNN) and a Boosted Trees (BT) model. The CNN have a global view of the microservice graph and
be able to anticipate the impact of dependencies on end-to-end performance, and the BT model is
used to predict the probability of QoS violation. Zhou et al. [45] proposed AHPA, which decomposes
load into trend, periodicity, and residual components, and different load forecasting methods are
adopted for periodic and non-periodic workloads, such as exponential smoothing and regression
forests. The fedformer and Quat-former models serve as replacements when data is abundant.

0, 0, 0. , 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:5

Table 1. Comparison of related work.

Approach
Technique Performance Metrics Scaling Mode

Threshold Control Theory Learning Resource Usage Response Time SLO Violation&Error Supply&Demand Vertical Horizontal

Wong et al. [21] ✓ ✓ ✓ ✓ ✓ ✓

Xu et al. [42] ✓ ✓ ✓ ✓ ✓

Liu et al. [23] ✓ ✓ ✓ ✓ ✓

Rossi et al. [33] ✓ ✓ ✓ ✓ ✓ ✓

Pozdniakova et al. [31] ✓ ✓ ✓ ✓

Baarzi et al. [4] ✓ ✓ ✓ ✓ ✓ ✓

Baresi et al. [6] ✓ ✓ ✓ ✓ ✓

Bi et al. [8] ✓ ✓ ✓ ✓ ✓

Hossen et al. [16] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rzadca et al. [34] ✓ ✓ ✓ ✓ ✓ ✓

Xu et al. [41] ✓ ✓ ✓

Podolskiy et al. [29] ✓ ✓ ✓ ✓ ✓

Wang et al. [39] ✓ ✓ ✓ ✓

Qiu et al. [32] ✓ ✓ ✓ ✓ ✓

Zhang et al. [43] ✓ ✓ ✓ ✓

Zhou et al. [45] ✓ ✓ ✓ ✓ ✓

StatuScale (this paper) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Learning-based elastic scaling strategies has the capability to understand the characteristics of
application workloads and can analyze the demand for resources in advance, thereby enhancing
system performance. However, it inevitably faces the problem of model error. The accuracy greatly
depends on the selection of the model and the characteristics of the load, and its applicability is
limited for high-dimensional and complex loads and microservices. If the system’s performance
relies entirely on a learning model, such as [29, 41], ensuring performance may be challenging. In
addition, such as [32, 39], at the beginning of execution, the model may suffer from low accuracy
due to the lack of sufficient historical data for modeling, making it difficult to efficiently manage
resources at the early stage. In model maintenance, if there are changes in application load charac-
teristics, the cost of retraining the model is extremely high, leading to performance degradation.
Lastly, [32, 39, 43] rely on microservices invocation graphs, leading to poor adaptability of the
model during migration.

2.4 Critical Analysis
We have proposed a hybrid approach (the hybrid model has gradually emerged as a trend [3, 7])
named StatuScale, which combines control theory-based and learning-based methods. In Table 1, we
compared our proposed method (StatuScale) with the related works discussed above. Differing from
threshold-based and control theory-based approaches, StatuScale introduces a lightweight decision
tree learning model. This model undergoes rapid retraining and effectively extracts application load
characteristics. By analyzing these features, the system gains a better understanding of application
behavior patterns and dynamically adjusts resources as needed to meet changing load demands.
Different from learning-based approaches, the occurrence of load bursts and high-dimensional

changes renders learning models ineffective with long self-recovery cycles, significantly impacting
system performance. To the best of our knowledge, we are the first to apply trend lines from stock
price analysis to cloud workload status detector and define a mathematical method for calculating
trend lines. This enables effective utilization of load trend analysis for burst detection, facilitating
rapid resource allocation to alleviate performance pressure.
Furthermore, we observe that many related works only consider either horizontal or vertical

scaling individually, with few addressing both simultaneously. StatuScale introduces a time-window-
based fast response and slow contraction horizontal controller to enhance our resource scheduling
framework.

0, 0, 0. , 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

0:6 Wen et al.

3 STATUSCALE: A STATUS-BASED RESOURCE SCHEDULER
StatuScale integrates both horizontal and vertical scaling, selecting different resource scheduling
methods based on the load status. This section will first introduce the system model and objectives
of StatuScale (Section 3.1), followed by an introduction to the vertical scaling (main part) and
horizontal scaling of StatuScale (Section 3.2 and Section 3.3), and how they collaborate (Section 3.4).

Fig. 1. The system model of StatuScale.

3.1 System Model and Objectives
The design goal of StatuScale is to offer an efficient resource management approach for service
providers to scale resources. As shown in Fig. 1, the system model of StatuScale mainly consists
of three components: Load Preprocessor, Performance Evaluator and Auto-Scaler. In the following
sections, we will describe the design of each component and how they work collaborate. The
optimization objective of StatuScale is formulated in Eq. (1):

min
∑︁
𝑚∈𝑀

𝑃𝑚/𝐴𝑀 ×
∑︁
𝑝∈𝑃

𝑅𝑝/𝐴𝑃 + 𝜔𝑡
∑︁
𝑚∈𝑀

𝑅𝑇𝑚/𝐴𝑀 ,

𝑠 .𝑡 . 𝑃𝑚 ≥ 1, 𝑅𝑝 , 𝑅𝑇𝑚 ≥ 0, 𝐴𝑃 ≥ 𝐴𝑀 ≥ 0.
(1)

where𝑀 represents the set of all microservices in the application, 𝑃𝑚 represents the number of
pods with microservices𝑚 (horizontal quota), 𝐴𝑀 represents the number of microservices in the
application, 𝑃 represents the set of all pods in the application, 𝑅𝑃 represents the resource allocation
amount (vertical quota) with pod as 𝑝 , 𝐴𝑃 represents the number of pods in the application, 𝑅𝑇𝑚

represents the response time of microservice 𝑚. Here parameters 𝜔𝑡 is a weight that balances
resource allocation and performance. The objective of the optimization equation is to minimize the
values of both resource quota and response time simultaneously, ensuring the maximization of
resource utilization efficiency.

3.2 Vertical Scaling Controller Based on Load Status Detector
The change of cloud workloads is influenced by various factors, resulting in periods of stability
and turbulence. There may be extended periods of stability when business demands are relatively

0, 0, 0. , 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:7

consistent or when the system is running smoothly. However, due to sudden increases in user
demand, such as during specific promotions or product launches, cloud workloads may experience
significant changes and become more turbulent. Therefore, for the management and optimization
of cloud workloads, dynamic monitoring and analysis are required to understand their changing
trends and patterns.

Fig. 2. Underestimating the load leads to a decrease in performance.

3.2.1 Load Predictor based on LightGBM. The load prediction model provides reliable load fore-
casting support for cloud service providers. Accurate load prediction and analysis can improve the
system’s reliability, stability, and performance, thereby increasing the efficiency and availability of
the entire system. In order to efficiently make predictions and support rapid scaling decisions, we
avoid using heavyweight machine learning or deep learning methods and instead consider adopting
the Gradient Boosting Tree algorithm. This algorithm is based on the concept of ensemble learning,
where multiple weak learners (typically decision trees) are combined to build a powerful ensemble
model. Some well-known gradient boosting trees, such as LightGBM [19], have been widely used,
with many Kaggle data mining competition winners using it for its excellent performance in most
regression and classification problems2, so we use LightGBM as our Load Predictor in StatuScale.

Nonetheless, the challenge of load forecasting stems from its inherent inaccuracy, which arises
from the multitude of variables and the unpredictability of future events. Despite leveraging ad-
vanced algorithms and data analysis techniques, load forecasting cannot achieve absolute accuracy,
we used the Alibaba dataset (refer to Section 4.1 for more details) and LightGBM for load forecasting
and found that many times the load predictions were inaccurate, this inherent uncertainty remains
a key challenge in load forecasting. As shown in Fig. 2, we have already marked the moments of
underestimating the load with red dots, most of which are caused by a sudden increase in the load
and the system’s load is already relatively high. In such cases, it is too late to scale resources, so it is
necessary to identify instances of load underestimation in advance in order to take timely actions.
2https://towardsdatascience.com/boosting-showdown-scikit-learn-vs-xgboost-vs-lightgbm-vs-catboost-in-sentiment-
classification-f7c7f46fd956

0, 0, 0. , 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

0:8 Wen et al.

3.2.2 Load Status Detector. In order to identify potential instances of inaccurate load forecasting
and optimize system performance and improve user experience, StatuScale introduces the concepts
of resistance and support lines to effectively detect whether the workload is in a "stable" status and
take appropriate measures to adapt to different workload statuses.

(a) (b)

(c) (d)

Fig. 3. Examples of resistance line used for load status detector.

Examples of load evaluation using resistance and support lines are shown in Fig. 3, we use Fig. 3(a)
to illustrate the operation of the resistance line (please note that this figure does not represent
actual experimental results). Before assessments, we mark instances of load underestimation, which
are indicated by orange dots (as shown in Fig. 2). We then divide the x-axis into six segments, and
subsequent actions are based on these segments (each segment has 5 data points in StatuScale).
First, we generate resistance and support lines using data from the first segment, and extend

them to the next segment. Next, we check whether the data in the second segment exceeds the
resistance and support lines or not. If it does, we define it as an unstable load and adopt alternative
elastic scaling strategies. If not, we classify it as a stable load, allowing us to continue using the
LightGBM-based load prediction elastic scaling strategy. In this example, the data in the second
segment does not exceed the resistance and support lines, so we label it as a stable load.
Subsequently, we merge the data from the second segment with that of the first segment and

update the load resistance and support lines using this combined data. We then extend them to the
third segment. As observed in the graph, the load in the third segment has already exceeded the
resistance line, so we label it and the next segment (the fourth segment) as an unstable state. The
subsequent resistance and support lines data will be generated based on the fourth segment and
the process is repeated.

Resistance and support lines are applicable to load analysis and can be used to assess load stability.
In short, when a load fluctuates between the resistance and support lines, it is considered to be in a
relatively stable status. The resistance and support lines represent the boundaries within which the
load operates. Within this range, the load may fluctuate up and down, but it generally does not
deviate too far from the resistance and support lines.
Customers prefer platforms that avoid under-provisioning entirely [15]. Therefore, we chose

to emphasize how to detect sudden loads by defining a resistance line to prevent adverse effects
resulting from under-provisioning, and the definition of a support line is similar and omitted here.
Firstly, we do not consider defining the resistance line as a quadratic or higher-order curve

function, because curve functions may result in gradually increasing or decreasing slopes over
time, which could lead to the workload "passively" breaking through the resistance line, making

0, 0, 0. , 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:9

overfitting more likely and causing misjudgments. In fact, linear functions are also employed in
stock price analysis for similar reasons. However, considering that linear functions are too simplistic
and challenging for workload state evaluation, we decided to set them as piecewise linear functions.
This design allows for real-time analysis based on the workload’s changing conditions, generating
workload resistance and support lines. Furthermore, the piecewise linear resistance line can also
address the status detector of periodic workloads (such as varying load characteristics during
daytime and nighttime), because we set the time window to be dynamic. When the workload is in
a stable state (between the resistance and support lines), the time window gradually increases. It
adjusts with the workload’s variations and is continuously updated. However, when the workloads
surpass the resistance line or support line (entering an unstable state), the time window resets to 0,
and the resistance line or support line is regenerated. The defined resistance line satisfies Eq. (2):

𝑓 (𝑡) = 𝑘𝑡 + 𝑏 + 𝜆𝑐𝑣, (2)
where 𝑘 represents the slope of the resistance line, 𝑡 is time, 𝑏 is the constant term of the

resistance line, and 𝑐𝑣 is the coefficient of variation, which is the ratio of the standard deviation 𝜎 to
its corresponding mean value 𝜇 of the data. It characterizes the degree of dispersion of the sample
interval and also represents the margin reserved for the resistance line. The greater the degree of
dispersion, the larger the allocated buffer space, and vice versa. 𝜆 is the adjustment parameter for
the margin of the resistance line.

The slope and constant term of the resistance line can be determined using polynomial fitting.
First, a set of fitting data (𝑡𝑖 , 𝐿𝑜𝑎𝑑𝑖) is given, where 𝑖 ∈ {0, 1, 2,,𝑚 − 1}. Then we can make a

fitting function 𝑏 + 𝑘𝑡 , and convert it into a minimum Mean Square Error problem. If there is a set
of fitting coefficients that can minimize the Mean Square Error 𝜖 , then this set of coefficients can
be considered the best. The equation for calculating the Mean Square Error 𝜖 is as shown in Eq. (3):

𝜖 =

𝑚−1∑︁
𝑖=0

(𝑏 + 𝑘𝑡𝑖 − 𝐿𝑜𝑎𝑑𝑖)2 . (3)

Next, we can take the following two partial derivatives for 𝜖 , and set each partial derivative to 0.
The results of equations, shown in Eq. (4), can be solved to determine the values of 𝑘 and 𝑏:

𝜕𝜖

𝜕𝑏
=

𝑚−1∑︁
𝑖=0

2 (𝑏 + 𝑘𝑡𝑖 − 𝐿𝑜𝑎𝑑𝑖) = 0,

𝜕𝜖

𝜕𝑘
=

𝑚−1∑︁
𝑖=0

2𝑡𝑖 (𝑏 + 𝑘𝑡𝑖 − 𝐿𝑜𝑎𝑑𝑖) = 0.
(4)

In addition, it is necessary to determine the value of the resistance line adjustment parameter 𝜆.
Utilizing the dataset from Alibaba cluster (refer to Section 4.1 for details) and conducting simulation
experiments with different values of 𝜆, the suitable parameter 𝜆 can be chosen based on the
experimental results. The problem is defined as follows:
Precision and Recall are important for evaluating the effectiveness of the Load Status Detector

because maintaining a balance between them is critical for assessing and optimizing the detector. As
shown in Fig. 4, we set the number of cases where load is underestimated and detected as unstable
as 𝐴, the number of cases where load is normal and detected as unstable as 𝐵, the number of cases
where load is underestimated and detected as stable as 𝐶 , and the number of cases where load
is normal and detected as stable as 𝐷 . We define Precision as 𝑃 , where 𝑃 = 𝐴

𝐴+𝐵 , it represents its
precision. A low Precision would cause the system to identify many normal states as unstable states,
resulting in wastage of resources. We define Recall as 𝑅, where 𝑅 = 𝐴

𝐴+𝐶 , it represents the probability

0, 0, 0. , 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

0:10 Wen et al.

of correctly identifying the instances of underestimation. A low Recall would represent that the
system fails to identify most moments of underestimation, leading to a performance degradation.
Therefore, the objective of a good Detector is to maintain high values of both Precision 𝑃 and Recall
𝑅. We use a comprehensive evaluation metric called F-Measure3 for quantification, which is the
harmonic mean of Precision and Recall: 𝐹 = 2𝑃𝑅

𝑃+𝑅 .

Fig. 4. Explanation of Precision and Recall. Fig. 5. Selection of Parameter 𝜆.

Choosing appropriate parameters is critical for achieving desired results, as parameter selection
can have a significant impact on the outcome. Some experiments are conducted using different
values of 𝜆 (0 < 𝜆 < 60), and the results are shown in Fig. 5. When 𝜆 is greater than 60 or less
than 0, the Precision or Recall is lower than 0.5. Therefore, we no longer consider cases where 𝜆
is greater than 60 or less than 0. As the parameter value decreases, the Precision increases while
the recall decreases, which is suitable for aggressive resource allocation systems. Conversely, as
the parameter value increases, the Precision decreases while the recall increases, which is suitable
for conservative resource allocation systems. In conclusion, we recommend selecting the most
cost-effective parameter based on the F-measure, and we have marked the maximum value of the
F-measure with a dot, corresponding to the case with 𝜆 = 30, where a balance between performance
impact and resource usage can be achieved.

3.2.3 Adaptive Proportional-Integral-Derivative. For the unstable loads evaluated in Section 3.2.2,
using a Proportional-Integral-Derivative (PID) controller is an effective method for maintaining
stability [35]. The PID controller is a widely used feedback controller used in automatic control
systems, which can be employed to dynamically adjust system resource allocation to adapt to
continuously changing load conditions. The PID controller consists of three components: i) pro-
portional, ii) integral, and iii) derivative, and its output value is the weighted sum of these three
components, as shown in Fig. 6.
The proportional term is responsible for responding to the current error, and the controller

adjusts the output signal based on the size of the error. A large error will result in a large output
signal, and vice verse. The proportional term responds quickly but can cause overshoot. The integral
term accumulates errors over time and helps to reduce steady-state errors. The derivative term
reflects the rate of change of the error and helps to suppress overshoot. By adjusting the weights of
each term, the PID controller can balance the response speed, stability, and accuracy to achieve the
desired output signal.

3https://deepai.org/machine-learning-glossary-and-terms/f-score

0, 0, 0. , 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:11

Fig. 6. The architecture of A-PID.

StatuScale introduces A-PID for vertical scaling to maintain stable CPU utilization and meet SLO
constraints. Unlike traditional PID controllers, A-PID has the capability of parameter self-tuning.
Initially, a target value is set and used as the input of the A-PID controller along with the observed
value. The output result is obtained by calculating the three proportional-integral-derivative terms
and accumulating them, which will be used for resource adjustment of the server. Regarding
parameter adjustment, the backpropagation (BP) network is utilized, the target value, actual output
value, error value, and bias term are taken as inputs in the input layer. In the middle, there is one
hidden layer with 5 neural nodes, and the activation function for the hidden layer is 𝑡𝑎𝑛ℎ. The
PID parameters 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 are outputs in the output layer, and the activation function for the
output layer is 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 , to achieve adaptive parameter adjustment.

3.3 Horizontal Scaling Controller Based on Comprehensive Evaluation and Resource
Reduction

Designing a horizontal scaling system is more challenging than a vertical scaling system. Horizontal
scaling requires time to create or remove pods, and load balancing is necessary during this period,
which may affect service performance and user experience. Additionally, the uncertainty of the
workload can result in the system executing unnecessary auto-scaling actions, leading to resource
waste.

In the pods co-location context, horizontal scaling adjustments are usually coarse, while vertical
scaling adjustments are more fine-grained. Moreover, under light load conditions, vertical scaling
performs faster because it can quickly increase system capacity, leading to faster response time and
higher steady-state throughput. However, under heavier load conditions, horizontal scaling is more
efficient in increasing the system’s steady-state capacity, making it more effective overall [13].

Therefore, when the workload increases, StatuScale can first assess whether vertical scaling can
meet the load requirements or not (vertical scaling are more advantageous in light loads). If not,
StatuScale starts with horizontal scaling for a coarse resource adjustment, and then uses vertical
scaling for a more precise adjustment (typically employing resource exponential decay [34]) to
meet the application’s needs while avoiding resource wastage and cost escalation.
To overcome these challenges, StatuScale employs a horizontal scaling control mechanism

based on comprehensive evaluation and resource reductions. The method involves analyzing and
transforming CPU utilization and comparing the transformed results with thresholds to determine

0, 0, 0. , 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

0:12 Wen et al.

whether to perform elastic scaling operations or not. It requires setting upper and lower thresholds,
and determining how CPU utilization will be transformed. The CPU utilization transformed at time
𝑡 is calculated by Eq. (5), 𝐶𝑡 is CPU utilization rate at time 𝑡 , the constant 𝐾 is a value greater than
1 used to adjust the horizontal scaling of strictness in maintaining target CPU utilization.

𝑆𝑡 =

{
1 − K𝐶𝑃𝑈𝑡𝑎𝑟−𝐶𝑡 , 𝐶𝑡 < 𝐶𝑃𝑈𝑡𝑎𝑟 ,

K𝐶𝑡−𝐶𝑃𝑈𝑡𝑎𝑟 − 1 , 𝐶𝑡 ≥ 𝐶𝑃𝑈𝑡𝑎𝑟 .
(5)

When current value 𝐶𝑡 is close to the target value 𝐶𝑃𝑈𝑡𝑎𝑟 , |𝑆𝑡 | approaches zero. When 𝐶𝑡 is far
from the target value 𝐶𝑃𝑈𝑡𝑎𝑟 , 𝑆𝑡 deviates from zero, and as the distance increases, |𝑆𝑡 | increases
exponentially.

To reduce the negative impact of instantaneous bursts, by using a sliding window, the sum of 𝑆𝑡
at different time points is computed and compared against upper and lower threshold values to
evaluate the need for horizontal scaling. According to Eq. (5), when resource utilization remains
consistently high or reaches extremely high levels, horizontal scaling can be triggered immediately
to maintain resource utilization within a certain range. In the case of horizontal scaling, the number
of replicas to be increased or decreased (𝑅𝑛) is a configurable percentage 𝛿 (defaulting to 10% [4])
of the current number of replicas (𝑅𝑐) for the microservice, and the minimum value of 𝑅𝑛 is 1. It
can be represented by Eq. (6):

𝑅𝑛 = max(𝛿 · 𝑅𝑐 , 1). (6)
Despite our careful design, the horizontal scaling system still faces the following issues: when

the system detects an increase in load and triggers horizontal scaling, but the scaling has not
taken effect yet, the system may misjudge resource inadequacy and trigger horizontal scaling
again, leading to multiple scaling operations. This phenomenon also occurs during scaling down.
Additionally, during significant load fluctuations, the system may experience frequent scaling
operations, potentially destabilizing the system. This frequent operation may increase resource
overhead, decrease response speed, or cause service interruptions.

To address this issue, we introduced a cooling-off period to regulate resource scaling. Typically,
the length of the cooling-off period can range from a few minutes to tens of minutes, depending
on various factors. A longer cooling-off period can reduce the frequency of resource adjustments,
thereby lowering the cost of resource adjustment. On the other hand, a shorter cooling-off period
can quickly adapt to frequent and intense load fluctuations. However, in our experiments, we set
the cooling-off period to 5 minutes based on the practice of existing article [11].
Since horizontal expansion involves a relatively large change, fine-tuning of vertical resource

reduction is necessary. This involves gradually reducing the vertical resource quota and reclaiming
unused resources. The approach defines a decay rate, which reduces the vertical quota by a certain
proportion over a specific period of time. This rate, denoted by 𝛽 , satisfies 0 < 𝛽 < 1, and the
vertical quota is reduced by this ratio every period of time 𝑡 . This is expressed as shown in Eq. (7),
𝑘 is a constant greater than 1, 𝑉 is the initial value of the resource.

𝑉 (𝑡) = 𝑉 · 𝑘𝛽𝑡−1. (7)

3.4 Collaborative Work
We combine horizontal and vertical scaling together to make them work collaboratively. Firstly, the
load indicator collector uses Kubernetes Metric Server and Prometheus4 to collect and aggregate

4https://prometheus.io/

0, 0, 0. , 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:13

resource metric data in the Kubernetes cluster, such as CPU and memory usage. It allows users to
access these metric data through APIs, and return the data to our system backend. The collected
data is stored in a local database for monitoring and automated horizontal scaling.

Fig. 7. The execution flow of StatuScale.

The collected data is sent to the horizontal scaling controller which decides whether horizontal
scaling is required based on comprehensive evaluation or not. If horizontal scaling is needed, it is
performed first followed by vertical resource adjustments, and a cooling-off period is applied to
avoid frequent scaling due to jitter. If horizontal scaling is not performed, vertical inspection is
carried out. The data is then analyzed by the load status analyzer. The Load Predictor based on
LightGBM is used to forecast the load and allocate resources accordingly. However, if the load is
unstable, the A-PID is employed to maintain resource utilization at a stable level. The workflow of
StatuScale is shown in Fig. 7, the numbers on each arrow demonstrates the sequence of executed
steps, and the pseudocode of the StatuScale algorithm is shown in Algorithm 1.

In StatuScale, horizontal and vertical scaling are conducted as follows:
• Horizontal scaling: Kubernetes offers the "kubectl scale" command, allowing adjustment
of the replica count for specified resource objects (such as Deployment, ReplicaSet, etc.)
via the Linux command line. Thus, horizontal scaling effects can be achieved by scripting
automation.

• Vertical scaling: Control Groups (cgroups) are a feature of the Linux kernel used to restrict,
control, and monitor resource usage of process groups. In Kubernetes, cgroups can be
employed to enforce resource limits and management for pods and containers. Hence,
vertical scaling effects can be achieved through scripting automation.

The time complexity of StatuScale is mainly influenced by the Load Status Detector, the A-PID-
based vertical scaling controller, and the LightGBM-based Load Predictor, the time complexity of
the horizontal scaling controller is constant, so it can be ignored. Assuming that the number of
samples in the time window is 𝑛, the time complexity of load status detector is 𝑂 (𝑛). The time
complexity of load prediction depends on the LightGBM model, assuming the tree depth is 𝑑 , the
number of trees is 𝑁 , and the number of features is𝑚. Thus, the time complexity of using LightGBM

0, 0, 0. , 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

0:14 Wen et al.

Algorithm 1: Elastic scaling algorithm in StatuScale.
Data: Total upper threshold 𝑆𝑢𝑡 , Single upper threshold 𝑆𝑢𝑠 , Total lower threshold 𝑆𝑙𝑡 , Single

lower threshold 𝑆𝑙𝑠 , Cooling-off period 𝑇𝑐 , All collected metrics;
Result: Action of scaling;

1 while True do
2 Calculate single 𝑆𝑡 and total 𝑆𝑇 based on Eq. (5);
3 if (𝑆𝑇 > 𝑆𝑢𝑡 𝑜𝑟 𝑆𝑡 > 𝑆𝑢𝑠) 𝑜𝑟 (𝑆𝑇 < 𝑆𝑙𝑡 𝑜𝑟 𝑆𝑡 < 𝑆𝑙𝑠) then
4 Add / Reduce resources based on Eq. (6);
5 Reduce / Add resources based on Eq. (7);
6 Suspend for a period of cooling-off period 𝑇𝑐 ;
7 else
8 if There is too little load data then
9 Apply vertical scaling strategy based on threshold;

10 else
11 Generate resistance and support lines based on Eq. (2), Eq. (3) and Eq. (4);
12 Evaluate load status based on resistance and support lines in Section 3.2.2;
13 if The load is in a stable status then
14 Apply vertical scaling strategy based on predicted workloads via LightGBM

in Section 3.2.1;
15 else
16 Apply vertical scaling strategy based on A-PID in Eq. (6) to maintain stability;
17 end
18 end
19 end
20 end

for prediction is 𝑂 (𝑁𝑑𝑚). The time complexity of using A-PID for vertical scaling mainly lies in
the forward and backward propagation in the neural network. The time complexity of the forward
propagation is related to the size of the neural network and is typically𝑂 (𝑎), where 𝑎 is the number
of connections between the input layer and the output layer. The time complexity of the backward
propagation is 𝑂 (𝑎ℎ2), where ℎ is the number of hidden layers. Therefore, the time complexity of
StatuScale is 𝑂 (𝑛 +max(𝑁𝑑𝑚, 𝑎ℎ2)).

4 PERFORMANCE EVALUATIONS
In this section, we provide a detailed description of the dataset used and the experimental configura-
tions. We also introduce a new performance evaluation metric, the correlation factor. Additionally,
we conduct experiments on the cluster to compare the performance of StatuScale with several
state-of-the-art approaches. Finally, two sets of experiments were conducted to evaluate the two
modules of StatuScale. The results validate that StatuScale can be effectively applied to automatically
optimize cloud resource usage.

4.1 Experimental Configurations
StatuScale is mainly developed using Python 3.9, and resource scaling is performed every 20 seconds.
The dataset, microservices, cluster configuration, and baseline methods used in the experiments
are as below:

0, 0, 0. , 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:15

• Load dataset:We used the dataset from theAlibaba Cluster5, which provides real production
cluster traces. The dataset, named cluster-trace-v2018, was sampled from a production
cluster of Alibaba and contains information on approximately 4,000 machines over a period
of 8 days, including timestamps, machine IDs, CPU usage, memory usage, network usage,
and disk usage. This dataset can accurately represent the workload characteristics of current
large-scale cloud clusters. We utilized this dataset as input for workload simulation to
evaluate the performance and reliability of applications or systems under various workload
conditions.

• Microservices demo applications: The two applications used in our experiments are:
1) Sock-Shop: It is an open-source demo application designed to showcase best practices

in developing cloud-native applications, which can simulate an online shopping plat-
form and comprises eight microservices, each providing a specific function, such as
shopping carts, payments, and inventory.

2) Hotel-Reservation: It is under the microservices architecture and is a distributed
system consisting ofmultiple services. Each service is independent, scalable, replaceable,
and communicates via network communication. It includes services such as user,
reservation, search, recommendation, and profile.

• Cluster configuration: All performance tests were conducted on virtual machines using a
Kubernetes cluster consisting of one master and two workers nodes. The operating system
used was CentOS-7, with each node having 4 GB of memory and 4 CPU cores.

• Baselinemethods: The three baseline methods used in our experiments are state-of-the-art
and representative methods of the three categories of methods in Section 2 of Related Work.
1) GBMScaler [40]: It is an elastic scaling strategy based on load prediction, which utilizes

LightGBM for model training and elastic scaling based on the predicted results of the
model. Choosing the LightGBM-based load prediction as a baseline is justified by the
widespread use of this framework in the field of machine learning, its flexibility, high
performance, and good tunability and interpretability in load prediction. Importantly,
similar to StatuScale, GBMScaler also employs a load predictor based on LightGBM for
resource scaling, making it a suitable baseline.

2) Showar [4]: It is a control theory-based elasticity scaling strategy. Since the code for
the paper has not been made open-source yet, we have implemented a model based
on the ideas from the paper that utilizes a 3𝜎 empirical formula for vertical scaling
without the need for parameter adjustments, and utilizes a PID controller for horizontal
scaling, the target values for the PID controller are aligned with StatuScale, and we
have changed the metric to CPU utilization. For further optimization, the parameters
(𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑) are dynamically adjusted using a BP neural network. The consistency with
StatuScale in using a PID controller for resource scaling further establishes SHOWAR
as a suitable baseline.

3) Hyscale [21]: It shares a similar algorithmic concept with Kubernetes’ auto-scaler,
both utilizing elastic scaling by checking whether the total CPU utilization of all pods
on the host exceeds the threshold of the host capacity. But it combines vertical and
horizontal scaling to optimize resource utilization and reduce costs. Hyscale has only
one adjustable parameter, which is the threshold. We have adjusted the threshold
to ensure that the total resource usage quantity across different methods remains
consistent in the experimental evaluation. Choosing HyScale as a baseline helps ensure

5https://github.com/alibaba/clusterdata

0, 0, 0. , 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

0:16 Wen et al.

the practicality and applicability of the research, while providing a baseline with
generality and reliability for comparison.

4.2 Preprocessing and Mapping
This section covers the preprocessing of raw data, which generates the formatted data that system
can process and profile the capability of applications on machines. Even if the loads on two
machines are the same, their request processing and CPU utilization may be different due to
various factors such as CPU performance, memory and disk performance, task types, other system
loads, and operating environments. The differences between machines can be significant, and it is
challenging to consider how these factors affect the mapping of loads to CPU utilization. Therefore,
we conducted multiple experiments to profile the relationship between loads and CPU utilization,
and we use Queries Per Second (QPS) to measure the size of the load. The experimental results
based on Sock-Shop are shown in Fig. 8(a), and the experimental results based on Hotel-Reservation
are shown in Fig. 8(b). The experimental results are similar to those of previous work [18].
After obtaining the mapping relationship between CPU and QPS, we can determine a corre-

sponding QPS based on CPU. We use Locust 6, an open-source load testing tool, to simulate a high
volume of user requests to evaluate the performance and stability of an application on specific
machine. The processed loads can be further analyzed by Load Status Detector to identify the status
should be provisioned with scaled resources.

(a) Profiling with Sock-Shop application. (b) Profiling with Hotel-Reservation application.

Fig. 8. The relationship between load and CPU utilization.

4.3 Metrics
In addition to measuring the commonly used metrics such as response time and SLO violations, we
referred to some literature on elasticity performance assessment and utilized performance metrics
based on the accuracy of supply-demand relationships [15, 17]. Furthermore, we also innovatively
introduced a correlation factor as an additional metric.

4.3.1 Response time and SLO violations under the same resource budget. Even under the same
resource budget (the resource budget refers to the cumulative product of resource supply within
each time unit and each time unit, which is represented as

∫
𝑅𝑡 𝑑𝑡 , and 𝑅𝑡 is the resource provided

at time 𝑡), different elasticity scaling methods can lead to differences in response time and SLO
violation rates. We need to evaluate the performance of different elasticity scaling methods from a

6https://locust.io/

0, 0, 0. , 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:17

user perspective. The SLO violation rate is defined as the ratio of the number of violations to the
total number of requests.

4.3.2 Accuracy of supply-demand relationships. We are considering evaluating the relationship
between resource supply and demand. The resource demand induced by a load is defined as the
minimum amount of resources required to achieve a specified performance-related service level
objective (SLO) [17]. Based on the resource demand and supply curves, we use the following two
performance evaluation metrics:

The under-provisioning accuracy metric 𝑎𝑈 is defined in Eq. (8) as the average fraction by which
the demand exceeds the supply [15, 17]:

𝑎𝑈 =
1

𝑇 · 𝑅

𝑇∑︁
𝑡=1

(𝑑𝑡 − 𝑠𝑡)+ Δ𝑡, (8)

where 𝑇 is the time period of the experiment expressed in time steps, 𝑅 is the total number of
resources available in the current experimental setup, the resource demand at time 𝑡 is 𝑑𝑡 , we
calculate 𝑑𝑡 based on Fig. 8(a), we can map any QPS to the corresponding CPU utilization rate. The
resource supply is 𝑠𝑡 , (𝑥)+ = max (𝑥, 0) is the positive part of 𝑥 , and Δ𝑡 is the time elapsed between
two subsequent measurements. Similarly, we define the over-provisioning accuracy 𝑎𝑂 as shown
in Eq. (9):

𝑎𝑂 =
1

𝑇 · 𝑅

𝑇∑︁
𝑡=1

(𝑠𝑡 − 𝑑𝑡)+ Δ𝑡 . (9)

4.3.3 Correlation factor of supply-demand relationships. In situations where the total resource
supply remains constant, we make the assumption that the supply curve will exhibit a similar trend
to that of the demand curve under ideal circumstances. This means that when there is a sudden
increase in the load on a microservice, there will be a greater demand for resources, correspondingly,
the supply of resources has to increase. If this assumption is not upheld, it will undoubtedly have a
negative impact on the performance of the microservice, because the current resource supply will
be unable to immediately cope with the unexpected spikes in load, resulting in processing delays
and increased response times.

The alignment between the supply curve and the demand curve reflects the efficient utilization of
resources. In such scenarios, reducing the allocation of resources will have a relatively minor effect
on the microservice, while increasing the allocation of resources can significantly improve resource
efficiency. Therefore, the resemblance between the supply curve and demand curve indicates the
effectiveness and appropriateness of various resource scheduling methods.
In CPU-intensive tasks, the supply curve can be represented by the curve showing changes

in CPU allocation, while the demand curve can be represented by the curve depicting changes
in load. We define a metric called the correlation factor to quantify the similarity between two
curves. The correlation factor is essentially similar to R-squared, an important statistical metric
used to assess the goodness of fit of regression models. It assists us in evaluating the elasticity
performance of different methods. However, we did not directly use R-squared here because 𝑑𝑡
is collected from Locust, which generates loads periodically, and 𝑠𝑡 is collected from Prometheus,
which periodically gathers resource usage data. Although their timing tasks have been set to be
consistent, due to various reasons, their periods cannot be completely aligned. Therefore, after the
tasks are completed, there are issues of inconsistent sample sizes and time drift between the two
curves, rendering R-squared inapplicable.

0, 0, 0. , 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

0:18 Wen et al.

Thus, we propose a new method in this paper, mainly inspired by the Dynamic Time Warping
(DTW) algorithm [38], commonly used in fields such as speech recognition. It effectively compares
time series with time offsets, variable speeds, or different lengths.

There may exist disparities in the number of sample points and time lag between the two curves.
However, the DTW algorithm can effectively address this challenge. The fundamental concept is
to align the two time series in such a way that their similarities can be compared at various time
points. For two time series of length𝑚 and 𝑛, denoted as 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑚} and 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛},
the DTW algorithm can compute their shortest distance through the following steps.

• To make the two datasets comparable, we transform and scale one set of data such that their
mean and standard deviation match the other set of data. Specifically, assuming that the
first set of data has an average value of 𝜇𝑋 and a standard deviation of 𝜎𝑋 , and the second
set of data has an average value of 𝜇𝑌 with a standard deviation of 𝜎𝑌 , each value 𝑥𝑖 in the
first set of data should undergo the transformation depicted in Eq. (10):

𝑥 ′𝑖 = (𝑥𝑖 − 𝜇𝑋) ×
𝜎𝑌

𝜎𝑋
+ 𝜇𝑌 , (10)

where 𝑥 ′𝑖 denotes the transformed value, and 𝜎𝑌
𝜎𝑋

represents the ratio of standard deviations
between the two datasets. This transformation aims to shift the average of the first dataset
to 𝜇𝑌 and scale the standard deviation to 𝜎𝑌 . Consequently, the first dataset will have the
same mean and variance as the second dataset.

• We define a distance matrix 𝐷 of𝑚 × 𝑛, where 𝐷𝑖, 𝑗 represents the distance between 𝑋 and
𝑌 at time points 𝑖 and 𝑗 . Initialize the distance matrix 𝐷 so that 𝐷𝑖, 𝑗 = ∞, indicating that
two time points cannot be directly connected.

• Starting from the top left corner, the DTWalgorithm gradually fills inmatrix𝐷 and calculates
the minimum distance for each position (𝑖, 𝑗). Specifically, for position (𝑖, 𝑗), it calculates its
distance to three positions (𝑖 − 1, 𝑗 − 1), (𝑖, 𝑗 − 1), and (𝑖 − 1, 𝑗), and selects the minimum
value as the current distance. This process can be represented by Eq. (11):

𝐷𝑖, 𝑗 =𝑚𝑖𝑛

𝐷𝑖−1, 𝑗 + 𝑑

(
𝑥𝑖 , 𝑦 𝑗

)
𝐷𝑖, 𝑗−1 + 𝑑

(
𝑥𝑖 , 𝑦 𝑗

)
𝐷𝑖−1, 𝑗−1 + 𝑑

(
𝑥𝑖 , 𝑦 𝑗

) , (11)

where 𝑑
(
𝑥𝑖 , 𝑦 𝑗

)
represents the distance between 𝑥𝑖 and 𝑦 𝑗 , which can be the Euclidean

distance, Manhattan distance, or other distance measures.
• Finally, element 𝐷 in the lower right corner of matrix 𝐷𝑚,𝑛 is the shortest distance between
𝑋 and 𝑌 . We can minimize this distance by adjusting the alignment between the two time
series. After calculating the DTW distance 𝐷𝑚−1,𝑛−1, the correlation factor (𝐶𝐹) are defined
as shown in Eq. (12), where max(𝑚,𝑛) represents the maximum sequence length.

𝐶𝐹 = max(𝑚,𝑛)/𝐷𝑚−1,𝑛−1. (12)

4.4 Comprehensive Evaluations
In CPU-intensive workloads [10], insufficient CPU resources allocated to microservices can impact
service availability and increase response time, this is an issue that we need to avoid as much as
possible. In other words, our experiments aim to reduce response time and SLO violations while
maintaining the CPU utilization at target level (±1%). Through the following experiments, we
present the performance of StatuScale compared to other baselines, with each experiment repeated
five times, and the results presented below are all with average values and 95th percentile confidence
interval (CI). We first conduct the performance evaluations using the microservices application
Sock-Shop. The average and 99th percentile response times of each approach are compared in

0, 0, 0. , 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:19

(a) Response time (b) CDF of response time (c) SLO violations (d) Correlation factor

Fig. 9. Performance comparison with Sock-Shop application.

(a) StatuScale (b) GBMScaler

(c) Showar (d) Hyscale

Fig. 10. Similarity analysis with Sock-Shop application.

Table 2. Results with 95% CI of the experiment data based on Sock-Shop.

Elastic
Scaling Strategy

Average
Response Time (ms)

99th Percentile
Response time (ms)

Maximum
Response Time (ms)

SLO (200 ms)
Violation (%)

SLO (250 ms)
Violation (%)

Correlation
Factor

Under-Provisioning
Accuracy (%)

Over-provisioning
Accuracy (%)

StatuScale 63.5 (59.7, 67.4) 311.2 (299.6, 322.7) 426.1 (410.8, 441.4) 6.5 (5.7, 7.3) 3.2 (2.3, 4.1) 0.59 (0.56, 0.62) 0.8 (0.7, 1.0) 9.1 (5.4, 12.8)

GBMScaler 68.5 (63.9, 73.2) 361.8 (329.8, 393.8) 473.1 (437.4, 508.9) 8.1 (6.9, 9.2) 5.9 (4.4, 7.4) 0.53 (0.47, 0.59) 2.0 (1.1, 2.9) 10.1 (8.1, 12.1)
Showar 72.2 (69.9, 74.5) 348.4 (319.3, 377.5) 474.2 (444.6, 503.9) 8.1 (7.3, 8.9) 4.9 (3.9, 5.9) 0.54 (0.50, 0.58) 1.5 (0.5, 2.6) 9.6 (6.5, 12.7)
Hyscale 70.0 (66.3, 73.7) 342.8 (319.6, 366.1) 471.5 (439.9, 503.2) 7.4 (6.5, 8.3) 4.3 (3.5, 5.2) 0.50 (0.44, 0.56) 1.1 (0.3, 1.8) 9.1 (7.8, 10.3)

Fig. 9(a), this figure represents the range of the 95th percentile CI, and the subsequent figure is similar.
To better highlight the differences in response time, we use Cumulative Distribution Functions
(CDF) to measure. Fig. 9(b) shows that compared with GBMScaler, Showar, and Hyscale, StatuScale
can effectively reduce response time. The experimental results show that for the performance at the
99th percentile of response time, StatuScale outperforms GBMScaler by 13.99%, Showar by 10.69%,
and Hyscale by 9.24%. For the the performance at average response time, StatuScale outperforms
GBMScaler by 7.30%, Showar by 11.97%, and Hyscale by 9.24%. These results demonstrate that under
the same resources budget, StatuScale’s performance is significantly better than other baselines.
We also observed that the performance of GBMScaler is relatively poor because it only makes
decisions based on predicted results, and inaccurate predictions can have impacts on the overall

0, 0, 0. , 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

0:20 Wen et al.

(a) Response time (b) CDF of response time (c) SLO violation (d) Correlation factor

Fig. 11. Performance comparison with Hotel-Reservation application.

(a) StatuScale (b) GBMScaler

(c) Showar (d) Hyscale

Fig. 12. Similarity analysis with Hotel-Reservation application.

Table 3. Results with 95% CI of the experiment data based on Hotel-Reservation.

Elastic
Scaling Strategy

Average
Response Time (ms)

99th Percentile
Response time (ms)

Maximum
Response Time (ms)

SLO (200 ms)
Violation (%)

SLO (250 ms)
Violation (%)

Correlation
Factor

Under-Provisioning
Accuracy (%)

Over-provisioning
Accuracy (%)

StatuScale 53.8 (51.2, 56.3) 271.5 (255.9, 287.0) 472.1 (453.5, 490.7) 3.7 (3.1, 4.2) 1.5 (0.9, 2.2) 0.56 (0.50, 0.62) 0.6 (0.4, 0.7) 17.7 (13.5, 21.8)

GBMScaler 58.8 (56.1, 61.6) 311.6 (291.6, 331.5) 528.2 (504.5, 551.9) 4.7 (4.0, 5.4) 2.3 (1.6, 3.1) 0.45 (0.38, 0.52) 0.5 (0.3, 0.7) 18.0 (13.0, 23.1)
Showar 59.8 (57.3, 62.2) 283.2 (271.3, 295.1) 494.7 (481.3, 508.0) 3.8 (3.3, 4.2) 1.6 (1.1, 2.1) 0.55 (0.51, 0.59) 1.1 (0.8, 1.4) 20.2 (11.2, 29.3)
Hyscale 61.3 (58.4, 64.3) 309.4 (296.3, 322.5) 526.2 (510.7, 541.8) 5.0 (4.4, 5.6) 2.5 (2.0, 3.1) 0.58 (0.53, 0.63) 0.4 (0.2, 0.5) 18.6 (13.1, 24.1)

performance of microservices. In terms of SLO violations, we configure the SLOs as 200 ms and 250
ms [16] respectively as shown in Fig. 9(c), and StatuScale can achieve the lowest SLO violations
compared with other baselines.
To further evaluate the performance in resource elasticity scaling, we collected data on the

variation of workload (requests per second) and CPU utilization over time as shown in Fig.10. We
then use the correlation factor to evaluate their similarity. The similarity results are shown in
Fig.9(d), StatuScale scores 0.59, GBMScaler scores 0.53, Showar scores 0.54, and Hyscale scores
0.50. StatuScale outperforms the other three baselines, demonstrating its effectiveness in resource
elasticity scaling to fit with workload fluctuations. Finally, we present the relevant experimental
results based on Sock-Shop in Table 2, including various evaluation metrics mentioned above. The

0, 0, 0. , 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:21

experimental results are presented in the form of the average and 95% CI. The optimal values are
highlighted using bold formatting.

Furthermore, we also utilized Hotel-Reservation application for evaluations. Similarly, we com-
pared the response time and SLO violations as shown in Fig. 11(a). Under the same resource budget,
StatuScale outperforms GBMScaler by 8.59%, Showar by 10.05%, and Hyscale by 12.34% in average
response time. In terms of performance at the 99th percentile response time, StatuScale outperforms
GBMScaler by 12.87%, Showar by 4.13%, and Hyscale by 12.26%.

As for SLO violations comparison, we configured SLOs threshold as 200 ms and 250 ms, as shown
in Fig. 11(c), StatuScale can also outperform all the baselines by reducing SLO violations. Fig. 12
shows that StatuScale can fit the resource usage and loads in a good way, and the correlation
factor comparison is shown in Fig.11(d). Meanwhile, we present the relevant experimental results
based on Hotel-Reservation in Table 3, including metrics such as under-provisioning accuracy and
over-provisioning accuracy.

4.5 Module Evaluations
To further assess the effectiveness of the key component, the load status detector, in StatuScale,
and evaluate the impact of each scaling mode on performance improvement, we conducted two
experiments:

4.5.1 Evaluations of Status Detector Module. In vertical scaling, the status detector module selects
the appropriate elastic scaling method based on the assessed load status. This involves elastic
scaling based on the LightGBM model and elastic scaling based on the A-PID controller.

To assess the status detector module, we conducted an ablation experiment in which the module
was removed. Additionally, to ensure a more precise evaluation and eliminate other interferences,
horizontal scaling was also removed (the following experiments do not involve horizontal scaling).
In the experiments, StatuScale with complete vertical scaling functionality (marked as StatuScale△),
StatuScale with the load status detector and A-PID controller removed (marked as StatuScale⋄),
and StatuScale with the load status detector and load prediction functionality removed (denoted as
StatuScale∗) were set as our comparative algorithms.

Table 4. Evaluation results with 95% CI of status detector module.

Mertrics StatuScale△ StatuScale⋄ StatuScale∗

Average Response Time (ms) 63.8 (60.2, 67.3) 71.5 (69.8, 73.2) 67.1 (62.7, 71.5)
99th Percentile Response Time (ms) 298.2 (292.3, 304.0) 322.4 (288.7, 356.1) 315.7 (299.8, 331.5)

Max Response Time (ms) 409.1 (402.6, 415.6) 439.4 (396.2, 482.5) 429.7 (416.3, 443.0)

Each experiment was repeated three times under essentially consistent total resource budget
(±1%) based on microservices application Sock-Shop. We collected average response time, 99th
percentile response time, and maximum response time based on each method. The average values
and 95% CI are presented in Table 4, and we marked the best result among the values in bold.
The experimental results indicate that, upon removing the load status detector module, there

is a noticeable decline in performance. The average response time increases between 5.24% and
12.11%, the 99th percentile response time increases between 5.86% and 8.13%, and the maximum
response time increases between 5.03% and 7.40%. However, in methods retaining the load status
detector module, experimental performance reaches its optimum.
Additionally, it can be observed that the removal of the load status detector has a significant

impact on methods based on only predictive algorithms. This is because only predictive methods

0, 0, 0. , 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

0:22 Wen et al.

inherently cannot anticipate moments of potential load underestimation, but the load status detector
can achieve this.

StatuScale can achieve the optimization because it accurately detects the load status and addresses
resource usage issues before load bursts occur, thereby maintaining resource utilization at a stable
state. Hence, it outperforms other baselines in terms of response time, SLO violations and correlation
factor.

4.5.2 Evaluations of Different Scaling Modes. As shown in Table 1, some researches focus on vertical
scaling [29, 32, 43], which allows for rapidly increasing or decreasing resource supply according to
demand. However, it suffers from limited scalability, as the system cannot vertically scale further
once it reaches hardware limits. This makes it unsuitable for handling heavy workload, and the
issue of single point of failure also restricts its widespread applicability in real-world scenarios.

Conversely, some researches solely concentrate on horizontal scaling [8, 41, 45]. While they can
offer better scalability and availability, they suffer from the issue of resource wastage, especially
during periods of low workload. Even with minimal demand, a complete replica is required to
handle requests.

Specifically, we designed an experiment to illustrate this issue. We ran StatuScale along with its
two variants to compare their resource overhead and performance differences. The first variant only
utilized the vertical scaling feature of StatuScale (marked as StatuScale□), and the second variant
only utilized the horizontal scaling feature of StatuScale (marked as StatuScale◦). We conducted
experiments using the microservice Sock-Shop and repeated each experiment three times.

Table 5. Evaluation results with 95% CI of different scaling modes.

Mertrics StatuScale StatuScale□ StatuScale◦

Average Response Time (ms) 64.0 (53.6, 74.3) 185.1 (183.4, 186.8) 39.0 (37.0, 41.0)

99th Percentile Response Time (ms) 309.8 (279.2, 340.3) 456.4 (450.6, 462.1) 225.4 (176.0, 274.8)

Max Response Time (ms) 424.0 (382.5, 465.6) 610.3 (605.3, 615.3) 367.8 (346.4, 389.1)

CPU Utilization (%) 79.5 (77.7, 81.2) 87.4 (87.2, 87.6) 56.5 (54.1, 59.0)

As shown in Table 5, we reported the averages values and 95% CI of the three experiments. The
experimental results indicate that StatuScale maintains an average response time of 64.0 ms with a
resource utilization rate of 79.5%. StatuScale□, with a resource utilization rate of 87.5%, maintains
the average response time at 190.5 ms. Meanwhile, StatuScale◦, with a resource utilization rate
of 47.7%, maintains the average response time at 39.6 ms. Although StatuScale◦ achieves optimal
performance, its resource utilization rate is relatively low due to allocating all resources each time a
complete replica is scaled, even when resource demand is low. While horizontal scaling can provide
a significant increase in resources, its scaling is coarse-grained. Despite achieving the highest
resource utilization rate, StatuScale□ exhibits poorer performance because of limited resources
on single-machine. Once the limit of resources per machine is exceeded, vertical scaling becomes
ineffective, leading to performance degradation. Overall, StatuScale, combining both horizontal
and vertical scaling, offers a balanced consideration between performance and resources, making it
the optimal choice for elastic scaling systems.

5 CONCLUSIONS AND FUTUREWORK
This paper proposes an efficient Kubernetes-based resource management framework called Sta-
tuScale for microservices. StatuScale introduces resistance and support lines in vertical scaling,

0, 0, 0. , 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:23

enabling differentiated resource scheduling based on load status detector. Additionally, it employs
a horizontal scaling controller that utilizes comprehensive evaluation and resource reduction to
manage the number of replicas for each microservice.

Experiments were conducted using the typical microservice applications (Sock-Shop and Hotel-
Reservation), and realistic trace derived from Alibaba. In addition, a new metric, correlation factor
showing the fitness between resource usage and loads, has been used for evaluations. Results have
shown that StatuScale can achieve better performance than the state-of-the-art approaches.
Despite its advantages over the baselines, StatuScale can be further improved. For instance,

the framework is built on top of individual microservices and does not fully consider the call
dependency graph of microservices, studying such patterns can support ensuring various quality
attributes [24, 30]. Furthermore, we can optimize our resource scheduling by predicting latency
[37]. In future work, we plan to consider this feature and enhance StatuScale’s ability for handling
microservices with complex dependency graph.

ACKNOWLEDGMENTS
This work is supported by National Key R & D Program of China (No.2021YFB3300200), National
Natural Science Foundation of China (No. 62072451, 62102408, 92267105), Guangdong Basic and
Applied Basic Research Foundation (No. 2023B1515130002, 2024A1515010251), Guangdong Spe-
cial Support Plan (No. 2021TQ06X990), Chinese Academy of Sciences President’s International
Fellowship Initiative (Grant. 2023VTC0006), Shenzhen Science and Technology Program (Grant
No. RCBS20210609104609044), Shenzhen Basic Research Program (No. JCYJ20220818101610023,
KJZD20230923113800001), and Shenzhen Industrial Application Projects of undertaking the National
key R & D Program of China (No.CJGJZD20210408091600002).

REFERENCES
[1] Zaakki Ahamed, Maher Khemakhem, Fathy Eassa, Fawaz Alsolami, and Abdullah S. Al-Malaise Al-Ghamdi. 2023.

Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction. Electronics 12, 3 (2023).
https://doi.org/10.3390/electronics12030650

[2] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2018. Elasticity in Cloud Computing: State of
the Art and Research Challenges. IEEE Transactions on Services Computing 11, 2 (2018), 430–447. https://doi.org/10.
1109/TSC.2017.2711009

[3] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. 2012. An adaptive hybrid elasticity controller for cloud infras-
tructures. In 2012 IEEE Network Operations and Management Symposium. 204–212. https://doi.org/10.1109/NOMS.
2012.6211900

[4] Ataollah Fatahi Baarzi and George Kesidis. 2021. SHOWAR: Right-Sizing And Efficient Scheduling of Microservices.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA). Association for Computing Machinery,
New York, NY, USA, 427–441. https://doi.org/10.1145/3472883.3486999

[5] David Balla, Csaba Simon, and Markosz Maliosz. 2020. Adaptive scaling of Kubernetes pods. In Proceedings of the
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, Piscataway, NJ, USA, 1–5. https:
//doi.org/10.1109/NOMS47738.2020.9110428

[6] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. 2016. A Discrete-Time Feedback Controller
for Containerized Cloud Applications. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 217–228. https://doi.org/10.1145/2950290.2950328

[7] André Bauer, Nikolas Herbst, Simon Spinner, Ahmed Ali-Eldin, and Samuel Kounev. 2019. Chameleon: A Hybrid,
Proactive Auto-Scaling Mechanism on a Level-Playing Field. IEEE Transactions on Parallel and Distributed Systems 30,
4 (2019), 800–813. https://doi.org/10.1109/TPDS.2018.2870389

[8] Qing Bi, Yiyi Liu, Lishou Zhang, Kai Kang, Di Yang, and Sikai Min. 2023. Dynamic Scalability Mechanisms for
Microservices in Federated Cloud Platform. In 2023 IEEE 5th International Conference on Civil Aviation Safety and
Information Technology (ICCASIT). 732–737. https://doi.org/10.1109/ICCASIT58768.2023.10351561

[9] Eric A. Brewer. 2015. Kubernetes and the Path to Cloud Native. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (Kohala Coast, Hawaii). Association for Computing Machinery, New York, NY, USA, 167. https:

0, 0, 0. , 2024.

https://doi.org/10.3390/electronics12030650
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1109/NOMS.2012.6211900
https://doi.org/10.1109/NOMS.2012.6211900
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1109/NOMS47738.2020.9110428
https://doi.org/10.1109/NOMS47738.2020.9110428
https://doi.org/10.1145/2950290.2950328
https://doi.org/10.1109/TPDS.2018.2870389
https://doi.org/10.1109/ICCASIT58768.2023.10351561
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

0:24 Wen et al.

//doi.org/10.1145/2806777.2809955
[10] Wenyan Chen, Kejiang Ye, Yang Wang, Guoyao Xu, and Cheng-Zhong Xu. 2018. How Does the Workload Look

Like in Production Cloud? Analysis and Clustering of Workloads on Alibaba Cluster Trace. In Proceedings of the
2018 IEEE 24th International Conference on Parallel and Distributed Systems. IEEE, Piscataway, NJ, USA, 102–109.
https://doi.org/10.1109/PADSW.2018.8644579

[11] Javad Dogani and Farshad Khunjush. 2024. Proactive auto-scaling technique for web applications in container-
based edge computing using federated learning model. J. Parallel and Distrib. Comput. 187 (2024), 104837. https:
//doi.org/10.1016/j.jpdc.2024.104837

[12] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian
Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine
Leung, SiyuanWang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou.
2019. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud &
Edge Systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA). Association for Computing Machinery, New York, NY, USA,
3–18. https://doi.org/10.1145/3297858.3304013

[13] Alim Ul Gias, Giuliano Casale, and Murray Woodside. 2019. ATOM: Model-Driven Autoscaling for Microservices. In
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). 1994–2004. https://doi.org/10.
1109/ICDCS.2019.00197

[14] Sara Hassan, Rami Bahsoon, Leandro Minku, and Nour Ali. 2022. Dynamic Evaluation of Microservice Granularity
Adaptation. ACM Trans. Auton. Adapt. Syst. 16, 2, Article 4 (mar 2022), 35 pages. https://doi.org/10.1145/3502724

[15] Nikolas Herbst, André Bauer, Samuel Kounev, Giorgos Oikonomou, Erwin Van Eyk, George Kousiouris, Athanasia
Evangelinou, Rouven Krebs, Tim Brecht, Cristina L. Abad, and Alexandru Iosup. 2018. Quantifying Cloud Performance
and Dependability: Taxonomy, Metric Design, and Emerging Challenges. ACM Trans. Model. Perform. Eval. Comput.
Syst. 3, 4, Article 19 (aug 2018), 36 pages. https://doi.org/10.1145/3236332

[16] Md Rajib Hossen, Mohammad A. Islam, and Kishwar Ahmed. 2022. Practical Efficient Microservice Autoscaling
with QoS Assurance. In Proceedings of the 31st International Symposium on High-Performance Parallel and Distributed
Computing (Minneapolis, MN, USA). Association for Computing Machinery, New York, NY, USA, 240–252. https:
//doi.org/10.1145/3502181.3531460

[17] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessandro V. Papadopoulos, Bogdan Ghit, Dick Epema, and
Alexandru Iosup. 2017. An Experimental Performance Evaluation of Autoscaling Policies for Complex Workflows. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (L’Aquila, Italy) (ICPE ’17).
Association for Computing Machinery, New York, NY, USA, 75–86. https://doi.org/10.1145/3030207.3030214

[18] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. 2019. Performance Modeling for Cloud Microservice Applica-
tions. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (Mumbai, India) (ICPE
’19). Association for Computing Machinery, New York, NY, USA, 25–32. https://doi.org/10.1145/3297663.3310309

[19] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang,Wei Chen,WeidongMa, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM:
A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA,
3149–3157. https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[20] Mohit Kumar, Jitendra Kumar Samriya, Kalka Dubey, and Sukhpal Singh Gill. 2022. QoS-aware resource scheduling
using whale optimization algorithm for microservice applications. Software: Practice and Experience n/a, n/a (2022).
https://doi.org/10.1002/spe.3211

[21] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, and Vinod Muthusamy. 2019. HyScale: Hybrid and Network
Scaling of Dockerized Microservices in Cloud Data Centres. In Proceedings of the 2019 IEEE 39th International Conference
on Distributed Computing Systems. IEEE, Piscataway, NJ, USA, 80–90. https://doi.org/10.1109/ICDCS.2019.00017

[22] Yongkang Li, Yanying Lin, Yang Wang, Kejiang Ye, and Chengzhong Xu. 2023. Serverless Computing: State-of-
the-Art, Challenges and Opportunities. IEEE Transactions on Services Computing 16, 2 (2023), 1522–1539. https:
//doi.org/10.1109/TSC.2022.3166553

[23] Bingfeng Liu, Rajkumar Buyya, and Adel Nadjaran Toosi. 2018. A Fuzzy-Based Auto-scaler for Web Applications in
Cloud Computing Environments. In Proceedings of the Service-Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei
Yin, and Qi Yu (Eds.). Springer International Publishing, Cham, 797–811. https://doi.org/10.1007/978-3-030-03596-9_57

[24] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong
Xu. 2021. Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA). Association for Computing Machinery, New York, NY, USA,
412–426. https://doi.org/10.1145/3472883.3487003

[25] Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F. Wenisch. 2021. Parslo: A Gradient Descent-Based Approach
for Near-Optimal Partial SLO Allotment in Microservices. In Proceedings of the ACM Symposium on Cloud Computing

0, 0, 0. , 2024.

https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1109/PADSW.2018.8644579
https://doi.org/10.1016/j.jpdc.2024.104837
https://doi.org/10.1016/j.jpdc.2024.104837
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/ICDCS.2019.00197
https://doi.org/10.1109/ICDCS.2019.00197
https://doi.org/10.1145/3502724
https://doi.org/10.1145/3236332
https://doi.org/10.1145/3502181.3531460
https://doi.org/10.1145/3502181.3531460
https://doi.org/10.1145/3030207.3030214
https://doi.org/10.1145/3297663.3310309
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1002/spe.3211
https://doi.org/10.1109/ICDCS.2019.00017
https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1007/978-3-030-03596-9_57
https://doi.org/10.1145/3472883.3487003

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

StatuScale: Status-aware and Elastic Scaling Strategy for Microservice Applications 0:25

(Seattle, WA, USA). Association for Computing Machinery, New York, NY, USA, 442–457. https://doi.org/10.1145/
3472883.3486985

[26] Adel Nadjaran Toosi, Jungmin Son, Qinghua Chi, and Rajkumar Buyya. 2019. ElasticSFC: Auto-scaling techniques for
elastic service function chaining in network functions virtualization-based clouds. Journal of Systems and Software
152 (2019), 108–119. https://doi.org/10.1016/j.jss.2019.02.052

[27] Aadharsh Roshan Nandhakumar, Ayush Baranwal, Priyanshukumar Choudhary, Muhammed Golec, and Sukhpal Singh
Gill. 2024. EdgeAISim: A toolkit for simulation and modelling of AI models in edge computing environments.
Measurement: Sensors 31 (2024), 100939. https://doi.org/10.1016/j.measen.2023.100939

[28] Vladimir Podolskiy, Anshul Jindal, Michael Gerndt, and Yury Oleynik. 2018. ForecastingModels for Self-Adaptive Cloud
Applications: A Comparative Study. In 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO). 40–49. https://doi.org/10.1109/SASO.2018.00015

[29] Vladimir Podolskiy, Michael Mayo, Abigail Koay, Michael Gerndt, and Panos Patros. 2019. Maintaining SLOs of Cloud-
Native Applications Via Self-Adaptive Resource Sharing. In 2019 IEEE 13th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO). 72–81. https://doi.org/10.1109/SASO.2019.00018

[30] Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent. 2020. The Weakest Link:
Revealing and Modeling the Architectural Patterns of Microservice Applications. In Proceedings of the 30th Annual
International Conference on Computer Science and Software Engineering (Toronto, Ontario, Canada) (CASCON ’20). IBM
Corp., USA, 113–122. https://dl.acm.org/doi/abs/10.5555/3432601.3432616

[31] Olesia Pozdniakova, Dalius Mažeika, and Aurimas Cholomskis. 2024. SLA-Adaptive Threshold Adjustment for a
Kubernetes Horizontal Pod Autoscaler. Electronics 13, 7 (2024). https://doi.org/10.3390/electronics13071242

[32] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2020. FIRM: An
Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Berkeley, CA, USA,
805–825. https://dl.acm.org/doi/pdf/10.5555/3488766.3488812

[33] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. 2023. Dynamic Multi-Metric Thresholds
for Scaling Applications Using Reinforcement Learning. IEEE Transactions on Cloud Computing 11, 2 (2023), 1807–1821.
https://doi.org/10.1109/TCC.2022.3163357

[34] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel
Nowak, Beata Strack, Piotr Witusowski, Steven Hand, and John Wilkes. 2020. Autopilot: Workload Autoscaling at
Google. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece). Association for
Computing Machinery, New York, NY, USA, Article 16, 16 pages. https://doi.org/10.1145/3342195.3387524

[35] Mikael Sabuhi, Nima Mahmoudi, and Hamzeh Khazaei. 2021. Optimizing the Performance of Containerized Cloud
Software Systems Using Adaptive PID Controllers. ACM Trans. Auton. Adapt. Syst. 15, 3, Article 8 (aug 2021), 27 pages.
https://doi.org/10.1145/3465630

[36] Mehmet Söylemez and Bedir Tekinerdogan. 2024. Microservice reference architecture design: A multi-
case study. Software: Practice and Experience 54, 1 (2024), 58–84. https://doi.org/10.1002/spe.3241
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3241

[37] Da Sun Handason Tam, Yang Liu, Huanle Xu, Siyue Xie, and Wing Cheong Lau. 2023. PERT-GNN: Latency Prediction
for Microservice-based Cloud-Native Applications via Graph Neural Networks. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’23). Association for Computing Machinery, New York, NY,
USA, 2155–2165. https://doi.org/10.1145/3580305.3599465

[38] Zhifu Tao, Qinghua Xu, Xi Liu, and Jinpei Liu. 2023. An integrated approach implementing sliding window and DTW
distance for time series forecasting tasks. Applied Intelligence 53, 17 (2023), 20614–20625. https://doi.org/10.1007/s10489-
023-04590-9

[39] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K. Ramakrishnan, Yangfei Zheng, Meng Yan, Xiaohong Zhang, and
Alex X. Liu. 2022. DeepScaling: Microservices Autoscaling for Stable CPU Utilization in Large Scale Cloud Systems.
In Proceedings of the 13th Symposium on Cloud Computing (San Francisco, California). Association for Computing
Machinery, New York, NY, USA, 16–30. https://doi.org/10.1145/3542929.3563469

[40] Jinyue Wei and Ming Gao. 2021. Workload Prediction of Serverless Computing. In Proceedings of the 2021 5th
International Conference on Deep Learning Technologies (Qingdao, China). Association for Computing Machinery, New
York, NY, USA, 93–99. https://doi.org/10.1145/3480001.3480016

[41] Minxian Xu, Chenghao Song, Huaming Wu, Sukhpal Singh Gill, Kejiang Ye, and Chengzhong Xu. 2022. esDNN: Deep
Neural Network Based Multivariate Workload Prediction in Cloud Computing Environments. ACM Transactions on
Internet Technology 22, 3, Article 75 (aug 2022), 24 pages. https://doi.org/10.1145/3524114

[42] Minxian Xu, Lei Yang, Yang Wang, Chengxi Gao, Linfeng Wen, Guoyao Xu, Liping Zhang, Kejiang Ye,
and Chengzhong Xu. 2024. Practice of Alibaba cloud on elastic resource provisioning for large-scale mi-
croservices cluster. Software: Practice and Experience 54, 1 (2024), 39–57. https://doi.org/10.1002/spe.3271

0, 0, 0. , 2024.

https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1016/j.jss.2019.02.052
https://doi.org/10.1016/j.measen.2023.100939
https://doi.org/10.1109/SASO.2018.00015
https://doi.org/10.1109/SASO.2019.00018
https://dl.acm.org/doi/abs/10.5555/3432601.3432616
https://doi.org/10.3390/electronics13071242
https://dl.acm.org/doi/pdf/10.5555/3488766.3488812
https://doi.org/10.1109/TCC.2022.3163357
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3465630
https://doi.org/10.1002/spe.3241
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3241
https://doi.org/10.1145/3580305.3599465
https://doi.org/10.1007/s10489-023-04590-9
https://doi.org/10.1007/s10489-023-04590-9
https://doi.org/10.1145/3542929.3563469
https://doi.org/10.1145/3480001.3480016
https://doi.org/10.1145/3524114
https://doi.org/10.1002/spe.3271

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

0:26 Wen et al.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3271
[43] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou. 2021. Sinan: ML-Based and

QoS-Aware Resource Management for Cloud Microservices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (Virtual, USA). Association for Computing
Machinery, New York, NY, USA, 167–181. https://doi.org/10.1145/3445814.3446693

[44] Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez, Chengzhong Xu, and Rajkumar Buyya. 2022. Machine
Learning-Based Orchestration of Containers: A Taxonomy and Future Directions. Comput. Surveys 54, 10s, Article 217
(sep 2022), 35 pages. https://doi.org/10.1145/3510415

[45] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen, Liang Sun, Peng Li, and Zhimin
Tang. 2023. AHPA: adaptive horizontal pod autoscaling systems on alibaba cloud container service for kubernetes. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence
(AAAI’23/IAAI’23/EAAI’23). AAAI Press, Article 1783, 9 pages. https://doi.org/10.1609/aaai.v37i13.26852

[46] Marwin Zuefle, Andre Bauer, Veronika Lesch, Christian Krupitzer, Nikolas Herbst, Samuel Kounev, and Valentin
Curtef. 2019. Autonomic Forecasting Method Selection: Examination and Ways Ahead. In 2019 IEEE International
Conference on Autonomic Computing (ICAC). 167–176. https://doi.org/10.1109/ICAC.2019.00028

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

0, 0, 0. , 2024.

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3271
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3510415
https://doi.org/10.1609/aaai.v37i13.26852
https://doi.org/10.1109/ICAC.2019.00028

	Abstract
	1 Introduction
	2 Related Work
	2.1 Threshold-based Elastic Scaling Strategies
	2.2 Control Theory-based Elastic Scaling Strategy
	2.3 Learning-based Elastic Scaling Strategies
	2.4 Critical Analysis

	3 StatuScale: A Status-Based Resource Scheduler
	3.1 System Model and Objectives
	3.2 Vertical Scaling Controller Based on Load Status Detector
	3.3 Horizontal Scaling Controller Based on Comprehensive Evaluation and Resource Reduction
	3.4 Collaborative Work

	4 Performance Evaluations
	4.1 Experimental Configurations
	4.2 Preprocessing and Mapping
	4.3 Metrics
	4.4 Comprehensive Evaluations
	4.5 Module Evaluations

	5 Conclusions and Future Work
	Acknowledgments
	References

