l‘)

Check for
updates

UELLM: A Unified and Efficient Approach
for Large Language Model Inference
Serving

Yiyuan He'2®, Minxian Xu!®)®, Jingfeng Wul®, Wanyi Zheng®®,

Kejiang Ye'®, and Chengzhong Xu*

! Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China
{yy.he2,mx.xu, jf.wu2,wy.zheng,kj.ye}@siat.ac.cn
2 Southern University of Science and Technology, Shenzhen, China
3 Shenzhen University of Advanced Technology, Shenzhen, China
4 State Key Lab of IoTSC, University of Macau, Macau, China
czxu@um.edu.mo

Abstract. In the context of Machine Learning as a Service (MLaaS)
clouds, the extensive use of Large Language Models (LLMs) often
requires efficient management of significant query loads. When providing
real-time inference services, several challenges arise. Firstly, increasing
the number of GPUs may lead to a decrease in inference speed due to
a heightened communication overhead, while an inadequate number of
GPUs can lead to out-of-memory errors. Secondly, different deployment
strategies need to be evaluated to guarantee optimal utilization and mini-
mal inference latency. Lastly, inefficient orchestration of inference queries
can easily lead to significant Service Level Objective (SLO) violations.
To address these challenges, we propose a Unified and Efficient approach
for Large Language Model inference serving (UELLM), which consists
of three main components: 1) resource profiler, 2) batch scheduler,
and 3) LLM deployer. The resource profiler characterizes resource
usage of inference queries by predicting resource demands based on a
fine-tuned LLM. The batch scheduler effectively batches the queries pro-
filed by the resource profiler based on batching algorithms, aiming to
decrease inference delays while meeting SLO and efficient batch process-
ing of inference queries. The LLM deployer can efficiently deploy LLMs
by considering the current cluster hardware topology and LLM char-
acteristics, enhancing resource utilization and reducing resource over-
head. UELLM minimizes resource overhead, reduces inference latency,
and lowers SLO violation rates. Compared with state-of-the-art (SOTA)
techniques, UELLM reduces the inference latency by 72.3% to 90.3%,
enhances GPU utilization by 1.2x to 4.1x, and increases throughput by
1.92x to 4.98x, it can also serve without violating the inference latency
SLO.

Keywords: Large Language Model Inference - Cloud Computing -
Resource Management * Scheduling Algorithm
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

W. Gaaloul et al. (Eds.): ICSOC 2024, LNCS 15404, pp. 218-235, 2025.
https://doi.org/10.1007 /978-981-96-0805-8_16

UELLM: A Unified and Efficient Approach for LLM Inference Serving 219

1 Introduction

The rapid development of deep learning has driven the emergence of large mod-
els, and technology companies are increasingly building large MLaaS clouds
for model training and inference services. Due to the massive number of infer-
ence requests in MLaaS cloud services (e.g., trillions daily on Facebook, billions
monthly on OpenAl [1]), most resources and costs are dedicated to inference
services (e.g., up to 90% in AWS, 70% in Meta AI [2]). Moreover, inference
services are often part of user-facing applications, thus they have strict latency
requirements [3]. Additionally, different inference requests have different latency
requirements. For example, 98% of inference services need to be served within
200 milliseconds, while recommendation services require responses in less than
100 milliseconds [4]. Although the serving time for LLM can be extended, reduc-
ing LLM inference latency remains a critical requirement to ensure a good user
experience [5].

In a typical MLaaS workflow, developers use large datasets to train LLMs
offline, then deploy multiple trained LLMs in the cloud to provide online infer-
ence services. Due to the increasing number of parameters in current LLMs,
distributed deployment is required [6]. This means that LLMs need to be
deployed on more hardware accelerators. However, the more hardware acceler-
ators deployed simultaneously, the greater the communication latency between
different hardware accelerators, which can increase inference latency and the
rate of SLO violations. Additionally, owing to the sequential execution charac-
teristics of LLM inference, multiple hardware accelerators can only work serially
during inference. This implies that as more hardware accelerators are deployed,
the waiting time increases, which in turn reduces the utilization rate.

To improve inference efficiency, batch processing! is often used. However,
the majority of contemporary LLM architectures are based on Transformer [7].
The autoregressive characteristic of the self-attention layer in these architectures
presents notable obstacles for model deployment and batching. Specifically, when
generating a new token, the model needs to attend to the previous tokens. To
reduce iterations, this requires the model to retain all information of the previous
tokens and store it in memory [6]. For a particular inference computation, denote
the batch size by b, the maximum length of input sequence by s, the maximum
length of output sequence by n, the hidden dimension of the transformer by h,
and the total number of transformer layers by [. The total number of bytes to
store the Key-Value Cache (KV Cache) in peak is 4 x blh(s+n) [8]. Thus, the size
of the KV Cache grows with the batch size and the maximum length of output
sequences. This means that processing requests with similar output lengths in a
batch can reduce redundant KV Cache and calculation load.

In light of these challenges, we propose UELLM, which integrates batching
requests and deploying LLMs efficiently. UELLM aims to maximize through-

! Batch processing represents the processing of inference requests with batches, which
is different from batching as discussed in this article. Here, batching refers to the
effective scheduling among batches and the efficient combination of requests within
each batch.

220 Y. He et al.

put, reduce inference latency, and lower SLO violation rates. UELLM primarily
consists of three components: resource profiler, batch scheduler and LLM
deployer. The resource profiler mainly uses a fine-tuned LLM to predict the
output length of each request and obtain the SLO for each request to facili-
tate subsequent scheduling. The batch scheduler optimizes the combination of
inference requests within a batch based on predicted output sequence length
and schedules them according to the SLO, reducing SLO violation rates and
inference latency. The LLM deployer strategically deploys LLMs based on the
network topology of the current hardware system and the specific characteristics
of the LLMs, enhancing GPU utilization and reducing inference latency. Finally,
UELLM runs a backend monitoring program to detect erroneous predictions
and adjust the allocated memory size to improve accuracy. By integrating these
components, UELLM optimizes memory usage and scheduling during inference.
This integration leads to a reduction in latency and SLO violation rates, while
also enhancing resource utilization when deploying Transformer-based LLMs for
text generation on GPUs.
In summary, our key contributions are:

— We analyze the primary bottlenecks present in LLM inference services: 1)
the challenge of efficiently batching diverse inference requests, and 2) the
difficulty of effectively utilizing resources during LLM inference due to the
extensive search space and diverse model structures.

— We propose UELLM, which can reasonably adjust batch combinations to
reduce latency and resource overhead, improve throughput, and efficiently
deploy LLMSs, thereby increasing resource utilization, reducing latency, and
minimizing resource overhead while meeting SLOs.

— We experimentally evaluate the effectiveness of UELLM on a realistic cluster.
Compared with SOTA techniques, UELLM reduces the inference latency by
72.3% to 90.3%, enhances GPU utilization by 1.2x to 4.1x, and increases
throughput by 1.92x to 4.98x, it can serve without violating the inference
latency SLO.

2 Background and Motivation

In this section, we will introduce the relevant background information regarding
LLMs and the phenomena that have motivated our design.

2.1 Background: Generative LLM Consumes Large Amount
of Memory

Currently, Transformer-based generative LLMs (such as ChatGPT [9], Llama [2],
ChatGLM [10], etc.) are autoregressive. They share the common characteristic of
predicting the most probable token based on past tokens. When not using batch
processing, the model generates one token at a time, requiring n iterations to
generate a sequence of n tokens. Each iteration involves an input token traversing

UELLM: A Unified and Efficient Approach for LLM Inference Serving 221

the model, which consists of a stack of transformer layers, including an attention
layer, two normalization layers, and two feed-forward layers. The self-attention
layer uses information from past tokens to generate the next token. Through the
self-attention mechanism, the model can weight each word in the input sequence,
focusing on important contextual information. During each step of the generation
process, the attention mechanism needs to compute queries, keys, and values. To
avoid recalculating each time, the previously generated keys and values can be
cached. This caching mechanism significantly reduces computation during the
generation phase and increases generation speed. However, since the KV Cache
sequentially stores information about previous tokens, it expands as the model

generates more tokens.

2.2 Motivation: LLM Inference Performance on Various
Deployment Configurations

) S
> © J(_U'
g 150 4 N
9] X =
20 £ =
20 155 § 3
. = o
10
10 s E £ o
2 5 £
1 30 . = ZB
1, 10 O
GPU 3 é\
n 1 o3
UMb ¢+ <P
(a) Latency. (b) Memory usage. (c) GPU Utilization.

Fig. 1. Normalized latency, memory usage, and GPU utilization under different config-
urations of GPU numbers and batch sizes. Each metric is normalized to its minimum

value.

Observation #1: Slight changes in deployment configurations can have
a significant impact on LLM inference performance. With the devel-
opment of large model technologies, the size and parameters of LLMs have
increased. To deploy LLMs for inference services, it is essential to allocate a
significant amount of memory. Nevertheless, the growth in the size of LLMs
far outpaces the development of hardware, making it difficult for a single hard-
ware accelerator (e.g., GPU) to support a LLM. Consequently, when deploying
LLMs for inference tasks, it is a common practice to distribute the model across
multiple hardware accelerators, thereby requiring a distributed deployment app-
roach. To facilitate this, a device map is required to delineate the allocation of
model layers to specific hardware accelerators. To ensure efficient subsequent
inference, the device map must be finely tuned, as the inference performance
of LLMs is highly sensitive to different deployment configurations. The process
of a deployment configuration can be simplified as follows: 1) determining the

222 Y. He et al.

number of GPUs, and 2) detailed adjustment of the device map to deploy each
layer of LLM on the corresponding GPU. Determining the appropriate number
of GPUs can be challenging, as merely increasing the number of GPUs may not
always be advantageous, given that an excessive number of GPUs can escalate
communication and synchronization costs among them. Figurel shows that a
reasonable number of GPUs can improve GPU utilization by 4x and reduce
latency by 20x compared to a poor GPU configuration. Even if the optimal
number of GPUs is determined, fine-tuning the device map is required. Table 1
shows that a well-configured device map (last row in Table 1) has the potential
to increase throughput significantly, doubling it compared to a poorly configured
setup (increasing from 11.19 to 22.55 in terms of average throughput). Therefore,
the inference performance of LLM is notably impacted by the model’s deploy-
ment configurations.

Table 1. throughput variations of ChatGLM2-6B on two GPUs (GPU#0: Tesla V100
and GPU#1: RTX 3090). It shows average, maximum, and minimum throughput for
different device maps.

Device map Throughput (token/s)
GPU#0 GPU#1 Average Maximum Minimum
layer 0-15 layer 16-32 11.19 11.58 10.84
layer 0-19 layer 20-32 13.09 13.48 12.61
layer 0-23 layer 24-32 14.85 15.45 14.09
layer 0-27 layer 28-32 17.23 18.00 16.16
layer 0-31 layer 32 22.55 23.07 22.11

2.3 DMotivation: LLM Inference Performance on Various Batching
Strategies

Observation #2: Batching multiple requests can reduce the SLO viola-
tion rate of LLM inference services under a large number of inference
requests. When faced with a large number of inference requests, batching mul-
tiple requests can reduce the SLO violation rate of LLM inference services. This
is because different requests can share weights, allowing multiple tokens to be
generated in a single iteration through batching, thereby increasing the token
generation rate and reducing the SLO violation rate. However, batching requests
for LLM services requires addressing two key issues. 1) Requests may arrive at
different times. A simple batching strategy either makes earlier requests wait
for later ones or delays incoming requests until earlier ones are processed, lead-
ing to significant queuing delays. 2) Requests may have vastly different input
and output lengths. Current batching techniques pad the inputs and outputs
of requests to balance their lengths [6], but this strategy requires fine-tuning

UELLM: A Unified and Efficient Approach for LLM Inference Serving 223

of the batched inference requests. Otherwise, it will lead to significant wastage
of GPU computation and memory (see Sect.2.3). Figurel shows the relation-
ship between batch size, GPU numbers, latency, GPU utilization, and memory
usage. It is evident that a well-configured combination of batch size and GPU
numbers can reduce latency by nearly 20x (with the worst-case scenario involv-
ing offloading), improve GPU utilization by 5x, and reduce memory usage by
150x. Consequently, the default batch combination technique results in signifi-
cant memory waste and low effective GPU utilization.

Given the background and our observations, they motivate us to design a
comprehensive framework capable of efficiently deploying LLMs and effectively
combining batches during inference, thereby improving system utilization and
reducing inference latency.

3 Related Work

In this section, we will discuss the SOTA technologies focusing on model deploy-
ment resource allocation and inference request batching in LLM inference ser-
vices, and their associated limitations.

3.1 Model Deployment

In the realm of model deployment resource allocation, Zhang et al. [4] proposed
MArk, a service system designed for ML inference. MArk integrates IaaS and
serverless computing to minimize costs while meeting SLOs. However, MArk pri-
marily focuses on the effective deployment of small models, overlooking LLMs
and the influence of device map on LLM deployment. In contrast, Wang et al. [1]
presented Morphling, a rapid and nearly optimal auto-configuration framework
for cloud-native model services. Morphling uses model-agnostic meta-learning to
navigate large configuration spaces. Morphling quickly adapts the meta-model
for new inference services by sampling a small number of configurations and uti-
lizing it to find the best configuration. However, Morphling performs stress tests
on each candidate configuration, resulting in additional computational burden
and causing significant latency during LLM testing, rendering it unsuitable for
scenarios with limited resources.

Moreover, there are some research studies that concentrate on the hardware
aspect. Choi et al. [11] focused on the hardware layer and introduced a novel
multi-model machine learning inference server scheduling framework. A crucial
aspect of their proposal involves utilizing hardware support for the spatial parti-
tioning of GPU resources. By implementing spatiotemporal sharing, they estab-
lished a new GPU resource abstraction layer was created using configurable GPU
resources. The scheduler assigns requests to virtual GPUs, known as gpulets,
based on the optimal resource allocation. In order to reduce the expenses associ-
ated with cloud-based inference servers, the framework dynamically adjusts the
number of GPUs required for a specific workload. Regrettably, Choi et al. solely
focused on deploying small models (e.g., ResNet50, LeNet, VGG16) and did not

224 Y. He et al.

consider the prevalent large models in the current landscape (e.g., ChatGLM
[10], Llama [2]).

3.2 Model Inference

In the context of batching inference requests, the predominant system in use is
the Triton Inference Server?. It provides simple dynamic scheduling and batch
processing features. As previously mentioned in Sect.2.3, getting the output
length of the query before scheduling is crucial for reducing latency and enhanc-
ing resource utilization. Nevertheless, Triton Inference Server lacks a viable
batch combination algorithm that takes into account SLOs and query output
for scheduling. To address this problem, Jin et al. [6] presented S, which is a
system-algorithm co-design framework that treats batch combination as a bin
packing problem through sequence length prediction to maximize GPU utiliza-
tion and achieve higher throughput. However, S® only considers predicted output
length when scheduling requests, without accounting for SLOs and other metrics.

Some studies focus on the inference services of traditional machine learn-
ing models. Ali et al. [12] proposed BATCH, a framework designed to enhance
the efficiency of machine learning services on serverless platforms by address-
ing the absence of batch processing support. The framework utilizes lightweight
profiling techniques and analytical models to identify the optimal parameter con-
figurations (i.e., memory size, batch size, and timeout) to improve system per-
formance while meeting user-defined SLOs. However, BATCH uses exhaustive
search methods for configuration, resulting in high time complexity and failing to
meet real-time requirements. Clearly, due to the significant differences between
LLMs and traditional machine learning models, these inference systems and stud-
ies are challenging to apply to more complex LLM inference systems. Wang et al.
[13] proposed Tabi, the first inference system addressing the resource overhead in
increasingly large language models. It is a multi-stage inference engine driven by
individual query feedback and leverages the latest ML advancements to optimize
LLM inference latency for classification tasks. However, Tabi is only optimized
for discriminative models (such as text recognition models) within the service
framework, i.e., non-generative LLMs (GPT [9], GLM [10]). Gunasekaran et al.
proposed Cocktail [14], a cost-effective ensemble-based model service framework
aimed at providing highly accurate predictions with minimal latency and reduc-
ing deployment costs in public cloud environments. Cocktail consists of two key
components: 1) a dynamic model selection framework that reduces the number
of models in the ensemble while meeting accuracy and latency requirements, 2)
an adaptive resource management framework that employs a distributed proac-
tive auto-scaling strategy to allocate resources efficiently to models. Although
Cocktail focuses on model selection, it is more centered on ensemble learning
rather than selecting individual models for inference. Seo et al. [15] proposed an
SLO-aware inference scheduler for heterogeneous processors on edge platforms.
While it addresses the issue of selecting appropriate model services for inference

2 https://developer.nvidia.com /triton-inference-server.

UELLM: A Unified and Efficient Approach for LLM Inference Serving 225

tasks, the models discussed are only small traditional deep learning models and
do not consider large models.

Our work, UELLM, is significantly different from S3 and Morphling. 1) Com-
pared to S3, firstly, S® recognizes the issues faced by batching but focuses solely
on reducing inference latency and improving utilization. In contrast, UELLM
considers factors like SLO in addition to those addressed by S3 and proposes
more diverse scheduling algorithms that support customization for different
scheduling objectives. Secondly, S does not consider efficient model deploy-
ment, whereas UELLM uses dynamic programming to optimize resource allo-
cation during LLM deployment. Thirdly, while both S® and UELLM fine-tune
LLMs for predicting output length, UELLM employs online learning, which is
better suited for the real-time tasks faced by LLM inference services. 2) Com-
pared to Morphling, UELLM uses simpler and more varied deployment algo-
rithms to efficiently deploy LLMs, whereas Morphling employs more complex
and singular meta-learning to find the optimal deployment configuration. Addi-
tionally, Morphling generates multiple possible configurations and stress tests
them simultaneously, greatly increasing system resource usage. In UELLM, only
one configuration is generated at a time, and supports dynamic scaling.

4 System Design

In this section, we present the detailed design of UELLM, a unified LLM inference
serving resource scheduling architecture comprising three main components: 1)
the resource profiler, 2) the batch scheduler, and 3) the LLM deployer. The
primary framework is illustrated in Fig. 2.

4.1 Resource Profiler

Before scheduling, each request undergoes processing by the resource profiler,
which consists of three primary modules: data collection, output length predic-
tion, and resource profiling. For predicting the length of inference requests, we
draw inspiration from S® [6] and fine-tune the large model ChatGLM3-6B [10]
to categorize the output lengths. The model is fine-tuned on the representative
Q&A dataset Alpaca®, using questions as inputs and the token length of the
answers as labels. Our observations indicate that the predictor accurately pre-
dicted the buckets with a precision of 99.51%. Furthermore, we evaluate our
predictor on established datasets such as the Google Natural-Question dataset
(See footnote 1) and the Alpaca GPT-4 dataset?, where it consistently achieved
an accuracy exceeding 80%.

3 https://ai.google.com /research /NaturalQuestions.
* https://github.com/tatsu-lab/stanford _alpaca.

226 Y. He et al.

APPLICATIONS
aq ’/write EJ;‘CI —t ‘-_'I-D - ,\f" \;’; & G
Compare cats and dogs.
Wi thcptof e —— E%,:ﬁ Resource profiler
<2 : Output
WMM rord fo the word & river. ﬂata collection Predication & Profiling length, =
m
@ Scledul
e _ BN, —
-—) fatcl B
: atch scheduler| I
ﬁﬁpﬂ.::h: 20 tokens Hm’_ﬂ%‘ﬂﬁm Batohth z
@ @ e
RN
t & - BT Wdeponr
1 Netwark topology ~ _ LLKs Deplayment algorithm Lonfig: device map
: — \\\
(T oy
= =
| - || BPU-BASED
@
Mo CLUSTER

NVLink

GPU#5

Fig. 2. The main framework and functional details of UELLM.

4.2 Batch Scheduler

Assume a batch = {q1, q2, ..., @} contains b queries, where each query ¢; indexed
by ¢ has input and output lengths denoted as Input; and Output;. The premise
of model batching is to ensure that the lengths of all inputs are equal. Hence,
prior to making inferences, each query will be padded to maxle(fnputi) to
achieve uniform length, leading to increased memory usage as a result of padding.
During the inference phase, the model needs to populate all outputs in the
batch to O = max?_;(Output;). Thus the total number of generated tokens
during inference is b x O. In contrast to the substantial memory consumption
associated with generating a large KV Cache, the memory occupied by batching
itself is minimal [5]. As Fig. 3 shows, there are three queries: query#1, query#2,
query#3 to be scheduled, the default batching will batching these queries into a
single batch, which will require 6 paddings and 174 tokens. Notably, for query#2
and query#3, numerous redundant tokens are generated. While UELLM will
batching the three queries into two batches: batch#2 and batch#3, requiring
only 2 paddings, generating 74 tokens and reducing the number of redundant
tokens significantly. Since the number of tokens is roughly proportional to the
computational and memory overhead, this reduction diminishes inference latency
and memory usage. The efficacy of UELLM is validated in Sect. 5

UELLM: A Unified and Efficient Approach for LLM Inference Serving 227

Default KV Cache (batching part) KV Cache (inference part)
query#1 batch#1 answer#1 (58 tokens) ﬁ‘—\xso
[[<padding> | <padding> | <pacding> | <padding> | Compare | cats | and | dogs | . | W[Cats | and | dogs | are | two | of | the | most | --. [<cos> |
query#2 answeri##2 XA50
[[<padting> | <pasaing> | What | is | the | capital | of | China | 7 |® [The [capital [of [china| is [Beijing [. [<eos- =
query#3 answer#3 ,_A_\xso
[Fina [rhyming [word [for [the | word [a [rver | . | [(Giver | . [<oos> [<oos> | <sos> | <eos> | <eos> | <aos> i
Total tokens : 58x3=174

UELLM
query#1 batch#2 answer#1 (58 tokens) ﬁLso
[compare [cats [and [dogs [. | [cats [and [dogs [are [two | of [the [most | ... [<eos> |
query#2 batch#3 answer#2 (8 tokens)
[<pagding> | <pacaing> | What | is | the [capital [of | China | 27 | l jihis) [“‘"“a'[of [C“i"“[5 [Beijing [o [<e"s’l
query#3 answer#3
[Fina [rhyming [word [for | the [word [a [river | . | [[iver | . | <eos> [<eos> [<eos> [<cos> | <eos> | <eos> |

Total tokens : 58x1+8x2=74

Fig. 3. Comparison between UELLM and the default batching algorithm. The com-
parison illustrates the utilization of the KV Cache in both the batching and inference
stages for three queries. UELLM focuses on optimizing token usage, leading to a notable
decrease in the overall number of tokens processed during inference in comparison to
the default method.

In UELLM, the batch scheduler plays a crucial role in batching inference
requests following profiling into suitable batch for subsequent LLM inference.
The primary objective of the batch scheduler is to minimize latency, optimize
memory usage, and prevent SLO violations during the batching process of these
queries. To attain this objective, we introduced the SLO-ODBS algorithm 1,
which is based on the resource utilization characteristics during LLM inference,
while considering both the inference latency and SLO requirements. Further-
more, to prevent excessive delays and overhead caused by the algorithm’s execu-
tion, we have streamlined its design while ensuring its effectiveness. SLO-ODBS
receives a sequence of inference requests from the resource profiler and outputs
batches. The algorithm can be divided into three stages: 1) the initialization
phase (lines 1-4), 2) the combining single batches based on output phase (lines
5-19), and 3) the sorting all combined batches (lines 20-23).

In stage 1), all requests are initially sorted in ascending order according to
their SLO and a set of parameters is initialized.

In stage 2), we first maintain the properties of the current batch to be com-
bined, denoted as batch.: the current maximum latency Loy, the current max-
imum output length O¢js, and the current maximum composite metric C' M.
Therefore, the total latency 7; can be defined as:

N
Ty =Y ((SLO; + Lewr) x (Jbatche| + 1) x Li), (1)

i=1

228 Y. He et al.

and total output length T, can be denoted as:

N
T, =Y ((Lengthi + Ocar) x (|bacthe| + 1) x Ly). (2)
i=1

Among them, N represents the number of queries in the batch. and L1, L2 rep-
resent the additional overhead due to parallel computing. Therefore, our opti-
mization objective mainly considers two aspects: the total latency T; and the
total output length T,,. We use weights w; and ws to balance the importance of
these two factors:

max (wy X T} +wa X Tp) < Threshold. (3)
w1, w2
To optimize system performance, it is necessary to ensure that the total sum
Total of the batch does not exceed the threshold T after adding each request:
Total < T. This approach allows the request sequence to be reassembled into
batch1, batchs, ..., batch., .

Algorithm 1: SLO and Output-Driven Dynamic Batch Scheduler (SLO-
ODBS)

Input: requests: A list of requests after profiling

Output: batches: A list of batch
1 Procedure SLO-0DBS (requests):

2 sorted_requests < sort(requests); > Sort by SLO in ascending order
3 batches, batch. +— 0;
4 Lev, Ocm, CM — 0
5 for g in sorted requests do
6 Ty < (¢.SLO + Lew) % (len(batche) + 1) x L1,
7 T, < (q.length - Ocar) x (len(batch.) + 1) x L2;
8 Total < w1 x Latency total + w2 X Length total,
9 if batch. = 0 or Total < Threshold then
10 batch..append(q.index);
11 Loy «— InaX(Lc]\/[7 q.SLO);
12 Ocwm < max(Ocw, g.length);
13 CM — max(CM, wi X g.length + ws x ¢.SLO);
14 else
15 batches.append(batche);
16 batch. «— {q.index};
17 Lewv + ¢.SLO;
18 Ocwm — q.length;
19 CM «— wi X q.length + w2 X q.SLO;
20 Dynamically adjust batch_size according to the value of CM;
21 if batch. # () then
22 batches.append(batch.);

N
w

return batches;

UELLM: A Unified and Efficient Approach for LLM Inference Serving 229

In stage 3), we combine the batches obtained in stage 2) into a ready list
batches = {batchy, batchs, ..., batch,} for subsequent batch processing.

Based on the SLO-ODBS algorithm, different scheduling objectives can be
addressed by adjusting the values of w; and ws. Specifically, when w; = 0, we
developed the SLO Dynamic Batch Schedule (SLO-DBS) algorithm to reduce
the SLO violation rate by efficiently arranging inference requests. Conversely,
when we = 0, we designed the Output-Driven Dynamic Batch Schedule (ODBS)
algorithm to minimize inference latency by skillfully merging requests based on
the predicted output length.

4.3 LLM Deployer

The LLM deployer mainly starts during the LLM deployment phase. It arranges
the layers of the LLM according to the topology of the current system’s hard-
ware accelerators and the computational characteristics of each LLM layer. This
process establishes a suitable device mapping to allocate each LLM layer to
appropriate hardware accelerators, thereby achieving the objectives of enhanc-
ing hardware utilization and reducing latency. Specifically, it can be defined as
follows: given a hardware network represented by a graph G = (D, E), where
D ={d;,ds,...,d,} is a set of hardware devices, and E is the set of edges con-
necting the hardware. The large model lIm; has memory requirements M (Ilm;)
and the number of required layers Layer(llm;). Each node d; possesses the fol-
lowing attributes: Memory(d;) denotes the available memory at node d;, and
per formance(d;) represents the computational capacity of node d;. The objec-
tive is to find a device allocation scheme S C D that minimizes processing time
while satisfying memory constraint:

Z Memory(d;) > M. (4)

It is straightforward to see that this problem is a dynamic programming prob-
lem. Based on this, we designed the HELR as shown in Algorithm 2. This algo-
rithm is capable of ascertaining the most effective configuration for the deploy-
ment of an LLM, considering the current cluster node topology and the specific
LLM intended for deployment. The algorithm is divided into three parts: 1) the
initialization phase (lines 1-2), 2) the dynamic programming phase (lines 3-15),
and 3) the device map update phase (lines 16-19).

In stage 1), some necessary parameters are set and obtain the current model
information and cluster topology structure.

In stage 2), a two-dimensional array dp is maintained, where dp[mark][i]
denotes the Minimal latency from the initial state to the device node d; and
Per formance(d) denotes processing performance of device d. The dynamic pro-
gramming recurrence relation can be expressed as:

aplmart](il = | min_ (dplmartlfi, aplils) + Latency(BLL +» x %) ()

230 Y. He et al.

Therefore, our goal is to minimize latency:

15| .

. &) ar layersli] x m
i |2 =0+ (zatency(Blal +p x 2R) g
where layers[i] represents the number of layers assigned to device node d;,
Latency(FE]i][j]) represents the communication delay between device node d;
and dj, and p adjusts processing performance-time relationship. The algorithm
updates the array dp and the current state using Eq. (5).

In stage 3), the optimal allocation state best state is recorded to ensure
the best possible utilization of resources. The Device _map is then updated
using the information from layers and S. This update process ensures that
the deployment configuration reflects the optimal state, leading to improved
efficiency and performance in the subsequent stages.

Similar to the batch processing algorithm, different deployment objectives
can be achieved by adjusting the values of a; and as in the HELR algorithm.
Due to the sequential nature of inference, deploying on the minimum number of
GPUs possible can effectively improve GPU utilization. Therefore, to optimize
GPU utilization, setting a; to 0 while updating the dp array can significantly

Algorithm 2: High-Efficiency Low-Latency Resource Allocation Algo-
rithm (HELR)

Input: M: Memory requirement of LLM, Layer(M): Number of layers in the large model M

G(D, E): Graph representing the hardware platform, E: Connections between various nodes

D: Hardware device nodes, Latency(E[i][j]): Communication latency between node ¢ and node j
Per formance(d): Processing performance of device d, Memory(d): Available memory of device d
Output: Device_map: Mapping of layers to devices

1 Procedure HELR(M, Layer(M), G(D, E), E, D, Latency(E[i][j]), Per formance(d), Memory(d)):

2 Initialize best state < oo, Initialize Device map «— 0;

3 for each n from 1 to |D| do

4 Sy, is the subset of D with size n;

5 if the total memory of nodes in S, is more than M then

6 skip to the next subset;

7 Initialize dp[mark][i] «— oco;

8 for each mark from 1 to 2™ — 1 do

9 Sort the nodes in Sy, in descending order by performance and memory;
10 Calculate the memory per layer m «— #T{(NI);
11 for each i from 1 to |Sy| do
12 for each j from 1 to |Sy| where j # i do

// T is the memory reserved for KV Cache
13 Calculate the maximum layers assignable to node 1:
layers|i] «<— min(Layer(M), M*W);
14 Calculate the latency ! using the formula:
1= dpli][j] + Latency(Eli][j]) + p x peegerelilxm

15 Update dp[mark][i] < min(dp[mark][i],1);
16 current_state «— min(dp[2™ — 1][i] + Z‘Ji’i‘(Latency(E[i] [4]) +» % Wm));
17 if current_ state < best_ state then
18 best _state « current_state;
19 Update Device_map with layers and nodes in Sp;

20 return Device_ map;

UELLM: A Unified and Efficient Approach for LLM Inference Serving 231

enhance utilization. This configuration of a; forms the High-Efficiency Resource
Allocation (HE) algorithm, which is suitable for environments with limited
resources. Conversely, to fulfill the minimum latency requirement without con-
sidering expenses, the weight of a; can be increased. For example, setting a
to 10:1 establishes the Low-Latency Resource Allocation (LR) algorithm, which
prioritizes latency by assigning a high weight to a;.

5 Implementation and Evaluations

5.1 Evaluation Setup

Testbed. We use a local cluster (consisting of 4 Nvidia RTX 3090 GPUs) as the
test platform for conducting extensive experiments. To differentiate GPU per-
formance in our experiments, we set different performance limits for the GPUs,
as detailed in the Table 2.

ML Models. For the LLM inference service, we select the ChatGLM2-6B [10],
which is currently stable and widely recognized, to perform inference tasks. As
the ChatGLM2-6B model lacked batch inference capabilities at the time, we
make adjustments to its inference code to enable batch processing for future
experiments.

SLO. In our experiments, we define the SLO as the requirement for an infer-
ence request to receive a complete answer within a certain time frame. To better
approximate real-world scenarios, we designed different SLOs for different infer-
ence requests, ranging from 1s to 350s, ensuring that each inference request’s
SLO is completely random.

Resource Monitoring. Furthermore, it is essential to maintain continuous real-
time monitoring of individual GPUs within the cluster, focusing on metrics such
as GPU utilization, GPU memory usage, and the execution time of inference
programs. To achieve this, we utilized Nvidia’s interfaces to develop a script
capable of real-time monitoring of GPU information across the cluster.

Table 2. Cluster network topology. There are three different types of connections: 1)
X = Self, 2) PIX = Connection traversing at most a single PCle bridge, and 3) NODE
= Connection traversing PCle as well as the interconnect between PCle Host Bridges
within a NUMA node.

GPU#0 GPU#1 GPU#2 GPU#3 Maximum power
GPU#0 X PIX NODE NODE 350 W
GPU#1 PIX X NODE NODE 300 W
GPU#2 NODE NODE X PIX 250 W

GPU#3 NODE NODE PIX X 150 W

232 Y. He et al.

5.2 Baselines and Metrics

Baselines. We construct three versions of the UELLM prototype on a local
cluster: 1) UELLM-deploy (UD), which only uses the HELR model deployment
algorithm. 2) UELLM-batch (UB), which uses the SLO-ODBS batching algo-
rithm. 3) UELLM-all (UA), which employs both the HELR model deployment
algorithm and the SLO-ODBS batching algorithm. Currently, there are almost
no systems similar to ours, so we chose the current SOTA method Morphling
(Mor) [1] and the batching algorithm in S® [6] as our baselines for comparison
with UD, UB, and UA.

Metrics. We adopt four widely used metrics to evaluate performance: 1)
Latency, denoting the time taken for the system to respond to a request, encom-
passing the duration from request initiation to the commencement of processing
and result delivery. Lower latency enhances the user experience of LLM inference
services. 2) Throughput, quantified by the number of tokens processed per sec-
ond. Higher throughput means the system capacity to manage requests or data
within a specific timeframe, thereby improving overall processing efficiency. 3)
GPU utilization, where high utilization typically indicates efficient execution
of computational tasks, while low utilization may suggest underutilized resources
or bottlenecks necessitating further optimization. 4) SLO violation, a crucial
metric for assessing user experience. A lower default rate generally signifies a
stable and dependable service, leading to higher user satisfaction. Conversely, a
high default rate can result in diminished user experience or even user attrition.

5.3 Experiment Analyses

To minimize randomness, each experiment was repeated 5 times, and each data
point in Fig. 4 and Fig. 5 represents the average of these 5 trials. Before conduct-
ing the main experiments, we validated the effectiveness and advancement of the
batching algorithms and LLM deployment algorithms by two comparisons: 1)
We compared SLO-ODBS, SLO-DBS, and ODBS with the default batching algo-
rithm (FIFO) on scheduling metrics: latency and SLO violation rate. 2) We com-
pared LR, HE, and HELR with the baseline deployment algorithm, Basic Greedy
Scheduling Algorithm (BGS), on deployment metrics: throughput and GPU uti-
lization. Figure 4a and Fig. 4b show that under high request loads, by reasonably
combining requests, SLO-ODBS reduces the number of iterations and memory
overhead, maintaining low latency similar to the ODBS. At the same time, SLO-
ODBS schedules requests according to SLOs, achieving a low SLO violation rate
close to the SLO-DBS. Because HELR selects more reasonable resource alloca-
tion and deployment methods, Fig.4c and Fig.4d show that HELR maintains
utilization close to HE while achieving throughput similar to the LR.

Figure 5 compares the differences between UELLM and the SOTA algorithms
53 and Morphling across various metrics. Figure 5a illustrates the comparison of
GPU utilization, showing the average results of the algorithms over five different
time periods. It is observed that due to S2 and UB focusing solely on batch
scheduling, their GPU utilization is significantly lower compared to other base-
lines, indicating inefficiency in resource utilization. Morphling uses meta-learning

UELLM: A Unified and Efficient Approach for LLM Inference Serving 233

©
o
-
o
=)

@ —~
500) =5 e R = 930 g
7 400{ =3 sto-0ss ~ 60{ =3 so0ss < c 80
©4001 = Soo0es 5 %% = sioooss s £ e
> S =
3300 a0 520 s
3200 2 £ T 40
3 220 210 >
100 9 3] 2 20
» £ o © o
07700 150 200 250 300 0760 150 200 250 300 BGS LR HE HELR BGS LR HE HELR
Arrival Requests (req/s) Arrival Requests (req/s) Deployment algorithm Deployment algorithm
(a) Latency (b) SLO violation (¢) Throughput (d) GPU utilization

Fig. 4. Performance comparison of different batching algorithms and deployment algo-
rithms. (a) Latency, (b) SLO violation under various batching algorithms, while (c)
Throughput, and (d) GPU utilization under different deployment algorithms.

to search for the optimal configuration and conducts stress testing, while UA and
UD use the HELR algorithm to select the best resource configuration based on
the current node topology and model characteristics. Therefore, the results of
these three are very close. Overall, UELLM can achieve deployment effects sim-
ilar to Morphling with lower costs.

100

— 3 100 9
2 < G 300
- % S <
S 5 £
® S =200
= > (=}
El 5 5
o

> 20 2 3100
o o e
g Bl ¢

0 L2 0 oo

S3 Mor UD UB UA S3 Mor UD UB UA S3 Mor UD UB UA S3 Mor UD UB UA
(a) GPU utilization (b) SLO Violation (c) Latency (d) Throughput

Fig. 5. Comparison results of various metrics between S%, Morphling, UD, UB, and
UA. Metrics include (a) GPU utilization, (b) SLO non-violation, (c) inference latency,
and (d) throughput.

Figure 5b describes the comparison of SLO violation rates. UB, using only
the SLO-ODBS batching algorithm with the default deployment algorithm, can
meet the SLO for 87.4% of requests, serving as a baseline for analyzing the per-
formance of the other four algorithms. Compared to UB, S® only considers mem-
ory optimization without considering the SLO of each request and deployment
strategy, resulting in the poorest performance. The results of Morphling and UD
are almost identical because both only consider deployment strategies without
considering the SLOs of different requests. Although their inference delays are
lower in Fig. 5d, they still have a higher SLO violation rate compared to UB. UA
represents the optimal state of UELLM, considering both SLO and deployment
strategy. Thus, in five experiments, UA meets the SLO for all requests, achiev-
ing the best performance. Overall, compared to S® and Morphling, UELLM
optimizes the SLO violation rate by 29.6% to 48.2%.

Figurebc and Fig.5d describe the comparison of inference latency and
throughput, both metrics indicating the inference speed of the system, and are

234 Y. He et al.

thus discussed together. We use S2 and Morphling as benchmarks to analyze the
performance of the other three algorithms. Compared to Morphling, UD without
the need for stress testing, which in turn reduces stress testing time, leading to
lower overall inference latency and improved throughput. Compared to S, UD
optimizes resource allocation, improving utilization and communication latency,
significantly reducing inference latency. Compared to Morphling and S3, UB
uses the SLO-ODBS algorithm to optimize batch combinations, reducing itera-
tions, lowering inference latency, and improving throughput. UA shows the best
performance because it reduces latency and improves throughput from both
reasonable batch combination and resource allocation dimensions. UA uses the
HELR algorithm to optimize resource allocation and the SLO-ODBS algorithm
to optimize batch combinations, achieving the best results in five experiments.
Overall, compared to S and Morphling, UELLM reduces the inference latency
by 72.3% to 90.3% and improves throughput by 1.92x to 4.98x.

6 Conclusion

In this paper, we propose UELLM, a framework that integrates request batch-
ing and LLM deployment. UELLM is designed to maximize throughput, reduce
inference latency, lower SLO violation rates, and minimize memory wastage. We
introduce the HELR LLM deployment algorithm and the SLO-ODBS batch-
ing algorithm. The SLO-ODBS algorithm optimizes batch composition, while
HELR optimizes resource utilization during deployment, ensuring that UELLM
maintains high-quality service in terms of inference latency, throughput, and
SLO violation rates. Our experiments demonstrate that UELLM outperforms
the state-of-the-art in efficiently utilizing resources and reducing SLO violation
rates. This approach has the potential to significantly enhance the efficiency and
reliability of LLM-based inference services in cloud computing environments.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 62102408, 62072451, 92267105), Guangdong Basic and Applied
Basic Research Foundation (No. 2024A1515010251, 2023B1515130002), Shenzhen Basic
Research Program under grants JCYJ20240809180935001, and Shenzhen Industrial
Application Projects of undertaking the National key R & D Program of China (No.
CJGJZD20210408091600002).

Software Availability. The codes have been open-sourced to https://github.com/
HYIUYOU/UELLM for research usage.

References

1. Wang, L., et al.: Morphling: fast, near-optimal auto-configuration for cloud-native
model serving. In: Proceedings of the ACM Symposium on Cloud Computing
(SoCC 21), 2021, pp. 639-653. https://doi.org/10.1145/3472883.3486987

2. Wu, C.-J., et al.: Sustainable ai: Environmental implications, challenges and oppor-
tunities. In: Proceedings of Machine Learning and Systems (MLSys 22), vol. 4,
2022, pp. 795-813 (2022)

10.

11.

12.

13.

14.

15.

UELLM: A Unified and Efficient Approach for LLM Inference Serving 235

Crankshaw, D., Wang, X., Zhou, G., Franklin, M.J., Gonzalez, J.E., Stoica,
I.: Clipper: a Low-Latency online prediction serving system. In: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), Mar.
2017, pp. 613-627. https://www.usenix.org/conference /nsdil7 /technical-sessions/
presentation/crankshaw

Zhang, C., Yu, M., Wang, W., Yan, F.: MArk: exploiting cloud services for Cost-
Effective, SLO-Aware machine learning inference serving. In: 2019 USENIX Annual
Technical Conference (USENIX ATC 19), Jul. 2019, pp. 1049-1062. https://www.
usenix.org/conference/atc19/presentation/zhang-chengliang

Kwon, W., et al.: Efficient memory management for large language model serving
with pagedattention. In: Proceedings of the 29th Symposium on Operating Systems
Principles (SOSP 23), pp. 611-626 (2023)

Jin, Y., Wu, C.-F., Brooks, D., Wei, G.-Y.: s°: increasing gpu utilization during
generative inference for higher throughput. In: Advances in Neural Information
Processing Systems (NeurlPS 23), vol. 36, 2023, pp. 18 015-18 027 (2023)
Vaswani, A., et al.: Attention is all you need. In: Advances in neural information
processing systems (NeurlPS 17), vol. 30 (2017)

Sheng, Y., et al.: Flexgen: high-throughput generative inference of large language
models with a single gpu. In: International Conference on Machine Learning (ICML
23). PMLR, pp. 31 094-31 116 (2023)

Brown, T., et al.:. Language models are few-shot learners. In: Advances
in Neural Information Processing Systems 33 (NeurlPS 20), vol. 33, 2020,
pp. 1877-1901 (2020). https://proceedings.neurips.cc/paper _files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Du, Z., et al.: GLM: general language model pretraining with autoregressive blank
infilling. In: Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 22), May 2022, pp. 320-335. https://aclanthology.org/
2022.acl-long.26

Choi, S., Lee, S., Kim, Y., Park, J., Kwon, Y., Huh, J.: Serving heterogeneous
machine learning models on Multi-GPU servers with Spatio-Temporal sharing. In:
2022 USENIX Annual Technical Conference (USENIX ATC 22), Jul. 2022, pp.
199-216. https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
Ali, A., Pinciroli, R., Yan, F.,; Smirni, E.: Batch: machine learning inference serv-
ing on serverless platforms with adaptive batching. In: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC 20), pp.
1-15. IEEE (2020)

Wang, Y., Chen, K., Tan, H., Guo, K.: Tabi: an efficient multi-level inference
system for large language models. In: Proceedings of the Eighteenth European
Conference on Computer Systems (EuroSys 23), pp. 233-248 (2023). https://doi.
org/10.1145/3552326.3587438

Gunasekaran, J.R., Mishra, C.S., Thinakaran, P., Sharma, B., Kandemir, M.T.,
Das, C.R.: Cocktail: a multidimensional optimization for model serving in cloud.
In: 19th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22), pp. 1041-1057, April 2022. https://www.usenix.org/conference/
nsdi22 /presentation /gunasekaran

Seo, W., Cha, S., Kim, Y., Huh, J., Park, J.: Slo-aware inference scheduler for
heterogeneous processors in edge platforms. In: ACM Trans. Architecture Code
Optim. (TACO 21) 18(4), 1-26 (2021)

