
30 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

Efficient Multi-Task Computation Offloading
Game for Mobile Edge Computing

Shuhui Chu , Chengxi Gao , Member, IEEE, Minxian Xu , Member, IEEE, Kejiang Ye , Senior Member, IEEE,
Zhu Xiao , Senior Member, IEEE, and Chengzhong Xu , Fellow, IEEE

Abstract—Mobile edge computing emerges to serve mobile users
with low-latency computation offloading in edge networks, which
are resource-constrained with massive users and workloads. How-
ever, existing communication and computing resource allocation
schemes for offloaded tasks aren’t efficient enough, where finished
tasks still occupy resources, wasting constrained resources. Besides,
the multi-user offloading is usually for scenarios of one task per
user, ignoring real-world multi-task offloading scenarios where each
user has multiple tasks, lack generality and flexibility. Meanwhile,
local computing resource allocation schemes in multi-task scenarios
ignore resource readjustment, causing low resource utilization.
To solve these problems, we propose ECO-GAME, an efficient
multi-task offloading scheme, which dynamically allocates band-
width and computing resources to unfinished tasks, resulting in
high resource utilization. We initially formulate the multi-task of-
floading problem as the game minimizing each user’s cost, which is
NP-hard. Thus we re-formulate the game utilizing potential games
to optimize user’s objective either locally or globally, and prove
the existence of its Nash equilibrium. We then design an efficient
multi-task offloading algorithm to obtain an approximate solution
in polynomial time, together with computational complexity anal-
ysis. We further conduct performance evaluation on ECO-GAME
utilizing price of anarchy. Numerical results demonstrate the effi-
ciency of ECO-GAME, and show ECO-GAME reduces 49.2% cost
over the state-of-the-art work, and scales well with the increasing
number of tasks and users.

Manuscript received 12 August 2022; revised 22 October 2023; accepted
5 November 2023. Date of publication 13 November 2023; date of current
version 6 February 2024. This work was supported in part by the National
Key R&D Program of China under Grant 2021YFB3300200, in part by Science
and Technology Development Fund, Macau SAR under Grant 0081/2022/A2, in
part by NSFC and The Science and Technology Development Fund, Macau SAR
under Grant 0123/2022/AFJ, in part by National Natural Science Foundation of
China under Grants 62072451, 92267105, 62272152, and 62102408, in part
by Guangdong Special Support Plan under Grant 2021TQ06X990, in part by
Shenzhen Basic Research Program under Grants JCYJ20200109115418592,
JCYJ20220818101610023, and JCYJ20220531100804009, in part by Open
Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital
Economy [Shenzhen (SZ)] under Grant GML-KF-22-22, in part by Shenzhen
Science and Technology Program under Grants JCYJ20220530160408019 and
RCBS20210609104609044, and in part by CAAI-Huawei MindSpore Open
Fund, Guangdong Basic and Applied Basic Research Foundation under Grant
2023A1515011915. (Corresponding authors: Chengxi Gao; Chengzhong Xu.)

Shuhui Chu and Chengzhong Xu are with the State Key Lab of IoTSC,
Department of Computer and Information Science, University of Macau, Taipa,
Macau 999078, China (e-mail: yc07445@um.edu.mo; czxu@um.edu.mo).

Chengxi Gao, Minxian Xu, and Kejiang Ye are with the Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055,
China (e-mail: chengxi.gao@siat.ac.cn; mx.xu@siat.ac.cn; kj.ye@siat.ac.cn).

Zhu Xiao is with the Shenzhen Research Institute, Hunan University, Shen-
zhen 518055, China (e-mail: zhxiao@hnu.edu.cn).

Digital Object Identifier 10.1109/TSC.2023.3332140

Index Terms—Multi-task, mobile edge computing, computation
offloading, potential games, Nash equilibrium.

I. INTRODUCTION

THE development of the mobile edge computing and the
Internet of Things (IoT) technology comes with a mas-

sive amount of mobile devices. Many mobile applications on
mobile devices, including natural language processing, face
recognition, interactive gaming and augmented reality, are
emerging in the market in recent years, which generally re-
quire intensive computation [1], [2]. However, mobile devices
are constrained in computing capability. The conflict between
resource-constrained mobile devices and resource-consuming
applications drives the development of mobile cloud computing
(MCC) [3]. In MCC, the computation tasks are offloaded from
mobile devices to resource-rich cloud infrastructures for execu-
tion, which are however located physically far away from mobile
devices, causing high latency for data exchange with the cloud.
To reduce data transmission delays during offloading, mobile
edge computing (MEC) has been proposed [4]. MEC deploys the
cloud infrastructures at the edge of the wireless networks, whose
physical locations are in the vicinity of the mobile users [5],
[6], [7]. Therefore, for computation offloading, MEC is able to
provide much lower delays and jitters than MCC, thus satisfying
the demands of the delay-sensitive applications.

The mobile edge networks come with a massive amount of
mobile user devices and a large amount of data and task load
from these devices, where the quick increase in the number of
mobile devices and task workload has brought a big burden to
the resource-constrained communication networks. Therefore,
it is necessary and urgent to fully utilize the limited resources
of networks. However, most of existing works implicitly as-
sume that the bandwidth and computing resources allocated
to each offloaded task remain unchanged during an offloading
and execution period regardless of the released resources by
finished tasks, thus leading to resource waste and sub-optimal
solutions. Besides, they fail to consider the real-world multi-task
computation offloading scenarios where each user has multiple
computation tasks and the local computing resources allocated to
each task can be re-adjusted throughout its local execution with
the resource release by finished tasks, therefore lack generality
and flexibility.

Specifically, the limitations manifest in four perspectives:

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4313-0839
https://orcid.org/0000-0003-1386-7394
https://orcid.org/0000-0002-0046-5153
https://orcid.org/0000-0001-6133-407X
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-9480-0356
mailto:yc07445@um.edu.mo
mailto:czxu@um.edu.mo
mailto:chengxi.gao@siat.ac.cn
mailto:mx.xu@siat.ac.cn
mailto:kj.ye@siat.ac.cn
mailto:zhxiao@hnu.edu.cn

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 31

Waste of Wireless Communication Resources: For computa-
tion offloading in MEC, like many related works [8], [9], [10], the
wireless communication resources are constrained. The majority
of existing works propose solutions about how each mobile
user selects an appropriate wireless channel to minimize its
computational offloading cost of time. However, they assume
that the bandwidth resources allocated to each offloaded task
remain unchanged, even though other offloaded tasks have com-
pleted transmission. In other words, in their bandwidth resource
allocation schemes, once the allocated bandwidth is determined,
it is fixed throughout the transmission of the task and can not be
re-adjusted although other tasks have completed transmission.
This leads to the waste of wireless bandwidth resources, and is
inferior for the resource-constrained scenarios. Therefore, it is
necessary to propose an efficient bandwidth allocation scheme
that re-allocates the wireless bandwidth from the transmission-
completed tasks to the transmission-uncompleted tasks to fully
utilize resources and improve computational offloading perfor-
mance in resource-constrained scenarios.

Waste of MEC Computing Resources: According to [8], [11],
the computing resources in MEC are limited. The majority of
existing works only propose allocating MEC computing re-
sources to mobile users’ tasks that choose offloading equally for
fairness, and imply that the allocated MEC computing resources
remain unchanged during a computation offloading period, even
though other tasks have finished computing. In other words, in
their computing resource allocation schemes, once the allocated
computing resources are determined, they are fixed throughout
the execution of the task and can not be re-adjusted although
other tasks have finished computing. This leads to the waste
of MEC computing resources, and is inferior for the resource-
constrained scenarios. Thus, it is necessary to propose an ef-
ficient computing resource allocation scheme that re-allocates
the computing resources from the computation-completed tasks
to the computation-uncompleted tasks to fully utilize the re-
sources and improve computation offloading performance in the
resource-constrained scenarios.

Lack of Consideration of the Multi-Task Offloading Scenar-
ios: The majority of existing solutions assume the multi-user
offloading scenarios where each user has only one computation
task, and try to reach optimal solutions. However, in a variety of
real-world applications, the smart device usually needs to per-
form multiple tasks simultaneously [11], [12], [13], [14], [15].
For example, the intelligent camera may have to simultaneously
perform several tasks such as the compression of video data,
real-time object recognition and so on. Therefore, the previous
solutions are not suitable for the multi-task offloading scenarios
where each user has a set of computation tasks to offload, since
the optimization objectives change into the granularity of user (a
group of tasks) instead of a single task. In this case, it’s essential
to take the multi-task offloading scenarios into consideration
for generality and re-formulate the optimization problem in the
granularity of user.

Lack of Consideration of the Local Computing Resource
Re-Adjustment for Each Task: As is known, mobile devices are
constrained in computing capability, while existing works such
as [13], [16], [17], [18], [19] propose the simple local computing

models which only consider that the local computing resources
allocated to each task are fixed throughout its local execution
once determined. They do not consider that when other tasks
finish computing, the corresponding allocated local computing
resources are released and the local computing resources of
uncompleted tasks can be re-adjusted. Their local computing
resource allocation schemes ignore the resource readjustment,
resulting in the waste of local computing resources and low
resource utilization. Therefore, it is necessary to propose an
efficient local computing resource allocation scheme that takes
the release and re-adjustment of the local computing resources
into consideration to improve the utilization of constrained local
computing resources.

To solve all aforementioned challenging problems, we pro-
pose ECO-GAME, a multi-task computation offloading algo-
rithm together with efficient wireless bandwidth and comput-
ing resource allocation schemes. In ECO-GAME, we con-
sider the cases that the bandwidth and computing resources
released by the completed tasks are re-allocated to the un-
completed tasks, and each user has multiple computation
tasks, which is abstracted to the multi-task offloading prob-
lem. Then, we take advantage of the tools of game theory to
formulate the multi-task offloading problem as the strategic
game, so that each mobile user makes its decisions locally
according to its own interests. Our contributions are outlined
below.
� We take into consideration the real-world scenarios where

each user has multiple tasks to compute in the MEC
computation offloading problem to ensure the generality.
Besides, for constrained resources, we take the resource
release and readjustment into consideration, and propose
efficient wireless bandwidth and edge computing resource
allocation schemes for offloaded tasks and an efficient local
computing resource allocation scheme for tasks computed
locally, which re-allocate bandwidth and computing re-
sources of completed tasks to uncompleted tasks, resulting
in high resource utilization. Based on the aforementioned
efficient resource allocation schemes, we propose the com-
putation models.

� Based on game theory, we initially formulate the multi-task
offloading problem as the computation offloading game,
which minimizes each user’s average cost for computing all
its generated tasks. However it’s NP-hard to solve the game.
Thus we utilize the tool of potential games to re-formulate
the game to optimize each user’s objective either locally or
globally, thereby solving the solution in polynomial time.
For the re-formulated game, its Nash equilibrium is further
proved to exist by constructing corresponding potential
function to show that it belongs to potential games.

� We propose the multi-task offloading algorithm based on
the formulated game (ECO-GAME), to obtain an approxi-
mate solution in polynomial time via its Nash equilibrium.
Our ECO-GAME is distributed and each user can make its
decisions locally and independently, ensuring the privacy
and confidentiality. Further, we perform an analysis about
the low computational complexity of ECO-GAME, and
derive an upper bound on the number of slots required for

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

32 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

ECO-GAME to terminate. Besides, performance evalua-
tion on ECO-GAME is given by utilizing the metric of
price of anarchy (PoA) and the upper and lower bounds for
PoA are derived from the perspective of the system cost.

� We conduct numerous experiments, and the experimental
results demonstrate the efficiency of ECO-GAME. The
results show ECO-GAME minimizes each user’s cost
while also reducing the computation cost of its each task,
ensuring the user’s QoS (quality of service). Besides, the
results illustrate ECO-GAME can be implemented in a real
time manner, and reduce the system cost by 49.2% over
JPBR [20], and scale well as the number of tasks on each
user increases and the number of users increases.

The remainder of this paper is organized as follows. The
related work in MEC computation offloading is discussed in
Section II. Section III introduces both system model and problem
formulation. We formulate the computation offloading game and
propose the computation offloading algorithm in Sections IV and
V respectively. Section VI gives numerical results, and the paper
is concluded in Section VII.

II. RELATED WORK

In last few years, computation offloading has increasingly
played a critical role in the area of mobile edge computing [21].
Many existing works solve the computation offloading prob-
lems in different perspectives. We summarize related works as
follows.

Typically, the optimization goals of the computation offload-
ing works focus either on energy consumption or on latency, or
on both [22]. Some existing works [23], [24] investigated the
computation offloading problems for minimizing energy con-
sumption. [23] optimized the energy consumption of the hosts in
cloud computing environment by considering their computation,
communication, and cooling energy consumption. [24] investi-
gated the problem of energy minimization together with resource
allocation, within the constraints on the computing and wireless
resources and the time latency. Some others [25], [26], [27],
[28] investigated the latency-minimization problems in MEC
offloading systems. [29] modelled the edge-edge and edge-cloud
collaborative offloading problem as the Markov decision process
to support low-latency applications. Both energy and latency
are critical factors in computation offloading, and there are
some works like [30], [31], [32], [33] optimizing energy and
time simultaneously in computation offloading. [30] applied the
vehicular nodes to provide the computing resources for solving
the Cloudlet node overload problem via task offloading. [31]
aimed to minimize the total cost of energy and latency for all
tasks using the reinforcement learning scheme. However, [31]
only focused on the system level, ignoring the individual level.

A number of recent works applied the game theoretical ap-
proach to investigate the distributed multi-user computation
offloading schemes [8], [9], [10], [20], [34], [35], [36], [37],
[38], [39]. [9] formulated the partial offloading problem in
multi-MEC system as a convex optimization problem maximiz-
ing each user’s satisfaction, which was further confronted as a
non-cooperative game. [20], [36] considered the computation

offloading problem with the wireless and cloud resource alloca-
tion, which was analysed from a game theoretic perspective. [34]
formulated the distributed computation offloading problem in
single-channel communication scenarios as the strategic game,
and its Nash equilibrium was proved to exist. [35] extended [34]
by considering multi-channel communication scenarios, and
Nash equilibrium of the reformulated game was also proved
to exist by using the tool of potential games. [39] formulated
the distributed offloading problem for Internet of Vehicles as a
game, and designed a self-learning based algorithm to obtain
its Nash equilibrium. However, all works above do not consider
the wireless and cloud resources from the completed tasks are
re-allocated to the uncompleted tasks. Besides, they only focus
on the multi-user offloading scenarios, where however each
mobile user has only one single computation task to perform.

For the multi-task offloading scenario, where each mobile user
has a group of computation tasks [11], [11], [12], [13], [14],
[16], [17], [18], [40], [41] studied the multi-server multi-task
offloading problem for minimizing the overall delay of all tasks,
where the communication and computing resource allocations
were jointly optimized. [17] studied the problem of joint task
offloading scheduling and resource allocation in vehicular edge
computing and decomposed it into a two-layer optimization
problem. [41] proposed a joint task offloading and resource
allocation with edge-edge cooperation and formulated it as a
potential game. However, they do not consider the reallocations
of these resources to uncompleted tasks. [12] formulated the
task offloading issue as a stochastic game based on multi-agent
imitation learning, in which each device minimizes its average
completion time of all the tasks it generates. However, [12] does
not consider the contention for communication and computa-
tion resources among multiple offloaded tasks. [18] considered
resource allocation, compression and security issues in computa-
tion offloading, which however doesn’t consider the contention
for local computing resources among multiple tasks. [13] inves-
tigated the multi-vehicle multi-task offloading problem with task
delay requirement constraints. [16] investigated the multi-task
offloading problem through nonorthogonal multiple access in
mobile edge computing. However, these works do not consider
the local computing resources from the completed tasks are
re-allocated to the uncompleted tasks.

The most related to our work are [20], [32], [42]. Our previous
work in [32] focused on the distributed multi-channel offloading
problem in homogeneous multi-channel communication scenar-
ios, and that the cloud computing resources allocated to each
offloaded task kept unchanged throughout its execution. Differ-
ent from [32], we investigate the multi-task offloading problem
in the heterogeneous multi-channel communication scenarios
in this paper, and consider cloud computing resources from the
completed tasks are re-allocated to the uncompleted tasks. [42]
considered the mobile users offloaded the tasks via a shared
channel, and only the users currently offloading their tasks could
be allocated the time slots dynamically. Different from [42],
our work takes the cloud computing resource contention among
multiple offloaded tasks into consideration. Besides, different
from [20], our work considers the communication resources
and cloud computing resources from the completed tasks are

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 33

re-allocated to the uncompleted tasks. Moreover, our work con-
siders the multi-task computation offloading scenarios, where
each user has multiple computation tasks. And different from
the existing multi-task offloading works, our work considers
the local computing resources from the completed tasks are
re-allocated to the uncompleted tasks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a general MEC network architecture consisting of
a wireless base station together with edge server resources
deployed in the vicinity and a group of N = {1, 2, . . ., N}
mobile device users, each mobile device user having multiple
independent computation tasks [13], [16] (e.g., a smart camera
user may run multiple independent tasks of video data com-
pression and real-time target recognition in parallel [16]). Any
of the tasks can be either computed on the device locally or
offloaded to edge servers for execution via one of a group
of M = {1, 2, . . .,M} wireless channels. Here the number of
computation tasks generated by user n is denoted as kn. Each
user n’s task i is denoted as (Dn,i, Ln,i). Here Dn,i denotes
the size of transmission data (program files, input parameters,
etc) when user n offloads its task i. Ln,i denotes the number
of CPU cycles required for user n’s task i. For user n, some
methods such as call graph analysis can be applied to obtain the
information ofDn,i andLn,i for each task i [35]. Usern’s task i’s
computation offloading decision is denoted as an,i ∈ {0} ∪M.
Here an,i = 0 implies user n determines to execute task i on
the device locally, and an,i > 0 implies user n determines to
offload task i to edge servers for computation via the channel
an,i. The decisions of all the tasks of user n make user n’s strat-
egy an = (an,1, an,2, . . ., an,kn

). Further, all users’ strategies
constitute the decision profilea = (a1,a2, . . .,aN). Like many
other works including [34], [35], we make an assumption that
all the users stay unchanged within a computation offloading
period.1 Considering constrained computing and wireless re-
sources, we next discuss our models of computing and wireless
resource allocation respectively. Note that the major notations
used in this paper are summarized in Table I.

A. Computing Resource Allocation

1) Local Computing Resource Allocation: We denote user
n’s computing capability on its device as F l

n (i.e., number
of CPU cycles per second). For user n’s task i, if it chooses
local computing (an,i = 0) and the other tasks of user n
choose offloading (an,j > 0, ∀j ∈ {1, 2, . . ., kn}\{i}), the al-
located computing resource of user n’s task i is F l

n. Due to the
limited local computing resources, when other tasks of user n
also choose local computing, they compete for local computing
resources. In order to ensure fairness among these independent
tasks, we consider that the computing resources of user nwill be
equally shared among these tasks that choose local computing.
Therefore, when an,i = 0, the computing resources allocated to

user n’s task i are computed as F l
n∑kn

j=1 I{an,j=0}
. The value of the

1In other words, mobile users cannot dynamically arrive or depart or change
their tasks’ decisions within a computation offloading period.

TABLE I
TABLE OF NOTATIONS

indicator function I{E} is 1 when E is true, and 0 when E is
false. The existing works such as [13], [16] assume a simple
local computing model, where the allocated local computing
resources cannot be re-adjusted throughout the computation
once determined. We put forward a complex local computing
model with consideration of resource release and re-adjustment
in this paper. Specifically, when the task computation is finished,
the allocated computing resources are released immediately, and
the released resources are re-allocated evenly to those tasks that
have not yet finished the computation, thereby improving the
resource utilization. Therefore, when an,i = 0, throughout the
computation of user n’s task i, the allocated local computing
resources may be dynamically increased in stages with the end
of the computation of other tasks that choose local computing.

2) Edge Computing Resource Allocation: Due to con-
strained MEC computing resources, when multiple tasks choose
edge computing, they compete for edge computing resources.
In order to ensure fairness among these independent offloaded
tasks, we consider that edge computing resources are equally
allocated to all the offloaded tasks. Edge computing resources
allocated to the offloaded task i of usern depend on the decisions
of all the users’ tasks. Therefore, when an,i > 0, we compute

F c

∑N
l=1

∑kl
k=1 I{al,k>0}

as the computing resources that are allocated

to task i of user n. Here F c is the computing capability of MEC
servers. However, givena, most related works including [8] con-
sider the computing resources allocated to each task that chooses
offloading remain unchanged throughout its computation. In
this paper, we take the resource release and re-adjustment into
consideration, namely, the computing resources of any offloaded

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

34 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

task get released as soon as it finishes computation, and the
released computing resources from the computation-completed
tasks are re-allocated evenly to the computation-uncompleted
tasks, in order to be work conserving. Therefore, when an,i > 0,
throughout the computation of user n’s task i, the allocated
computing resources may be dynamically increased in stages
with the end of the computation of other offloaded tasks.

B. Wireless Bandwidth Resource Allocation

The bandwidth resources of the wireless channel are shared
by the tasks that choose to offload via the channel. Unlike [32]
which considers the homogeneous multi-channel communica-
tion scenarios, here we focus on the scenarios of heteroge-
neous multi-channel communication and denote Bm as the
total bandwidth on the wireless channel m. When multiple
tasks choose to offload via channel m, they compete for the
bandwidth resources of channel m. In order to ensure fairness
among these independent offloaded tasks, we consider that
wireless bandwidth resources are equally allocated to all the
tasks that choose the same channel to offload. Therefore, when
an,i > 0, the bandwidth resources allocated to user n’s task

i are computed as
Ban,i

∑N
l=1

∑kl
k=1 I{al,k=an,i}

, where Ban,i
is the

total bandwidth on the channel m = an,i. However, given a,
most related works consider the bandwidth allocated to each
offloaded task keeps unchanged in the entire data transmission.
In this paper, we take the resource release and re-adjustment into
consideration, namely, the bandwidth resources of any offloaded
task get released once completing transmission, and the released
bandwidth from the transmission-completed tasks is re-allocated
evenly to the transmission-uncompleted tasks, in order to be
work conserving. Therefore, for user n’s task i, when an,i > 0,
the allocated bandwidth throughout its transmission may get
increased dynamically with the end of the data transmission of
other offloaded tasks on the same channel.

C. Computation Model

We next discuss the response time when usern’s task i chooses
local computing on user n’s device and edge computing on edge
servers, respectively.

1) Local Computing: For user n’s task i, when an,i = 0, the
local computing time of user n’s task i is related to all of user n’s
tasks that choose local computing. First of all, for all of user n’s
tasks that choose local computing, we sort their CPU cycles in
ascending order (if they are equal, they are sorted according to
the ID of the task). The sequence of the sorted CPU cycles can be
denoted as Ln,1′ , Ln,2′ , . . ., Ln,k′ , where k =

∑kn

j=1 I{an,j=0}.
Here when 1 ≤ j ≤ k, Ln,j′ denotes the j-th smallest CPU
cycles among user n’s k tasks that choose local computing.

Then, based on previous analysis of local computing resource
allocation, we can calculate the local computing time of the

task whose CPU cycles are Ln,1′ , as Ln,1′/
F l

n

k =
kLn,1′
F l

n
. Due

to Ln,1′ ≤ Ln,2′ , the task whose CPU cycles are Ln,1′ finishes
earlier than the task whose CPU cycles are Ln,2′ . As soon
as the task finishes computation, its computing resources are
released and re-allocated to computation-uncompleted tasks.

Therefore, the computing time of the task whose CPU cy-
cles are Ln,2′ , can be divided into two parts. One part is the
time before the task whose CPU cycles are Ln,1′ finishes,

which is equal to
kLn,1′
F l

n
. The other part is the time after

the task whose CPU cycles are Ln,1′ finishes, which is equal

to (Ln,2′ − Ln,1′)/
F l

n

k−1 =
(k−1)(Ln,2′−Ln,1′)

F l
n

. Hence, the total
computing time of the task whose CPU cycles are Ln,2′ , can

be calculated as
kLn,1′

F l
n

+
(k−1)(Ln,2′−Ln,1′)

F l
n

=
Ln,1′+(k−1)Ln,2′

F l
n

.
Similarly, the computing time of the task whose CPU cycles are

Ln,3′ , can be calculated as
Ln,1′+Ln,2′+(k−2)Ln,3′

F l
n

. Further, when
2 ≤ j ≤ k, the computing time of the task whose CPU cycles
are Ln,j′ , can be calculated as

Ln,1′ + Ln,2′ + · · ·+ Ln,(j−1)′ + (k − j + 1)Ln,j′

F l
n

(1a)

=

∑kn

i=1 I{an,i=0}

(
I{Ln,i<Ln,j′ }Ln,i + I{Ln,i≥Ln,j′ }Ln,j′

)
F l
n

(1b)

=
Ln,j′

F l
n

kn∑
i=1

I{an,i=0}

(
I{Ln,i<Ln,j′ }

Ln,i

Ln,j′
+ I{Ln,i≥Ln,j′ }

)
(1c)

=
Ln,j′

F l
n

kn∑
i=1

I{an,i=0} min

{
Ln,i

Ln,j′
, 1

}
. (1d)

Heremin{A,B} is a function wheremin{A,B} = B ifA >
B and min{A,B} = A otherwise. As we show before, when
j = 1, the computing time of the task whose CPU cycles are
Ln,j′ , is computed as

kLn,1′

F l
n

, which also satisfies (1d).
Therefore, according to (1d), the local computing time of user

n’s task i whose CPU cycles are Ln,i, is computed as

T l
n,i(a) =

Ln,i

F l
n

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0}. (2)

2) Edge Computing: When user n’s task i is offloaded to
edge servers for execution (i.e., an,i > 0), its edge execution
time is related to all offloaded tasks of all users. Based on
previous analysis of edge computing resource allocation, with
similar argument to the derivation of (2), for user n’s task i, its
edge execution time can be calculated as

T c
n,i,exe(a) =

Ln,i

F c

N∑
j=1

kj∑
k=1

min

{
Lj,k

Ln,i
, 1

}
I{aj,k>0}. (3)

In addition, for edge computing, computation offloading leads
to additional time cost for data transmission. For user n’s task i,
when an,i > 0, its data transmission time is related to all users’
tasks on channel an,i. Based on previous analysis of wireless
bandwidth resource allocation, with similar argument to the
derivation of (2), for user n’s task i, its data transmission time

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 35

is calculated as

T c
n,i,off (a) =

Dn,i

Ban,i

N∑
j=1

kj∑
k=1

min

{
Dj,k

Dn,i
, 1

}
I{aj,k=an,i}.

(4)

D. Problem Formulation

First of all, we consider the response time as the cost of
computing user n’s task i. We next introduce the cost of user
n’s task i in the cases of local computing and edge computing
respectively.

For usern’s task i, when an,i = 0, the cost of local computing
is computed as

Cl
n,i(a) = T l

n,i(a), (5)

where T l
n,i(a) is given in (2).

For user n’s task i, when an,i > 0, we compute the cost of
edge computing as

Cc
n,i(a) = T c

n,i,off (a) + T c
n,i,exe(a), (6)

where T c
n,i,off (a) and T c

n,i,exe(a) are given in (4) and (3)
respectively. Here the time cost of computing results back to
user n is ignored, since the size of computing results is generally
small enough compared to Dn,i [34], [35].

Based on (5) and (6), the cost for computing user n’s task i
can be calculated as

Cn,i(a) = Cl
n,i(a)I{an,i=0} + Cc

n,i(a)I{an,i>0}. (7)

Further, we define user n’s cost as the average cost (i.e.,
average response time) for computing all the tasks generated
by user n. For each user, the objective is to minimize its own
cost. This multi-task offloading problem is formulated as

min
an

∑kn

i=1 Cn,i(an,a−n)

kn
, ∀n ∈ N , (8)

which implies the trade-off between optimality and fairness.
a−n = (a1, . . .,an−1,an+1, . . .,aN) represents strategies of
all users except user n.

In order to solve the problem formulated above and to obtain
efficient users’ strategies, we take advantage of game theory to
formulate the corresponding game in the following section.

IV. COMPUTATION OFFLOADING GAME

We utilize the game theoretic approach to solve the formulated
multi-task offloading problem. Game theory is commonly used
to design distributed schemes that allow users to self-organize
to develop strategies based on their interactions, ultimately
obtaining mutually satisfactory solutions in which no user wants
to change its strategy unilaterally.

A. Game Formulation

In the formulated multi-task offloading problem, each user’s
objective is to minimize its own cost, which is formulated as

min
an∈Sn�{0,1,...,M}kn

Tn(an,a−n), ∀n ∈ N . (9)

According to (8), user n’s cost function is denoted as

Tn(an,a−n) =

∑kn

i=1 Cn,i(an,a−n)

kn
. (10)

In the computation offloading problem above where users
compete for bandwidth and computing resources, each user is
selfish and aims to minimize its own cost. Then a straightforward
approach to solve the problem is to formulate it as the game
Γ0 = (N , {Sn}n∈N , {Tn}n∈N). HereN represents user set, Sn

represents user n’s strategy space, and Tn(an,a−n) represents
user n’s cost function which is the utility function in games.

We solve the offloading problem using the significant solution
concept of Nash equilibrium in games in this paper. Specifically,
Nash equilibrium indicates a mutually satisfactory solution for
all users in which no user wants to change its strategy unilater-
ally. Thus it’s a relatively stable state. In the game Γ0, denote its
Nash equilibrium as a∗ = (a∗

1,a
∗
2, . . .,a

∗
N) when there doesn’t

exist any user that can unilaterally change its strategy at a∗ to
decrease its own cost, and this is expressed as

Tn(an,a
∗
−n) ≥ Tn(a

∗
n,a

∗
−n), ∀n ∈ N ,an ∈ Sn. (11)

However, given a−n, the optimization problem for user n
in (9) is a combinatorial optimization problem over the kn-
dimensional discrete space, which is NP-hard just like the similar
analysis in [35]. To find an approximate solution in polynomial
time, we discuss the distributed solution of the problem above
using the potential game Γn = (Kn, {Sn,i}i∈Kn

, {Un,i}i∈Kn
)

for user n, where Kn = {1, 2, . . ., kn} denotes the set of all
tasks of user n, Sn,i � {0, 1, . . .,M} represents user n’s task i’s
strategy space, and Un,i in (14) represents the utility function of
user n’s task i. By introducing the game Γn for user n, we can
reduce the dimensionality of the search space from kn to 1, and
find an approximate solution in polynomial time. The details are
as follows.

First of all, we introduce the concept of potential games [43]
as given in [35].

The potential game Γn is a game with a potential function
Φn(an,a−n) which satisfies that for each i ∈ Kn, an,−i ∈
Πi′ 	=iSn,i′ , and a′n,i, an,i ∈ Sn,i, if

Un,i(a
′
n,i, an,−i,a−n) < Un,i(an,i, an,−i,a−n), (12)

we have

Φn(a
′
n,i, an,−i,a−n) < Φn(an,i, an,−i,a−n). (13)

Here an,−i represents the decisions of user n’s all other tasks
except task i. Note that a = (an,a−n) = (an,i, an,−i,a−n).
For user n’s task i, its utility function Un,i is defined as follows.

Un,i(an,i, an,−i,a−n)

= I{an,i>0}

[
Dn,i

Ban,i

(
kn∑
k=1

min

{
Dn,k

Dn,i
, 1

}
I{an,k=an,i} − 1

)

+
Dn,i

Ban,i

N∑
j=1

kj∑
k=1

min

{
Dj,k

Dn,i
, 1

}
I{aj,k=an,i}

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

36 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

+
Ln,i

F c

(
kn∑
k=1

min

{
Ln,k

Ln,i
, 1

}
I{an,k>0} − 1

)

+
Ln,i

F c

N∑
j=1

kj∑
k=1

min

{
Lj,k

Ln,i
, 1

}
I{aj,k>0}

]

+ I{an,i=0}

[
Ln,i

F l
n

⎛
⎝ kn∑

j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} − 1

⎞
⎠

+
Ln,i

F l
n

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0}

]
. (14)

Note that for user n’s task i, when it chooses edge computing, its
utility function is equal to the first six terms in (14), and when it
chooses local computing, its utility function is equal to the last
three terms in (14).

In the potential game Γn, let the potential function Φn coin-
cide with user n’s cost function Tn, and user n’s task i’s utility
function Un,i in (14) is derived from Tn. Then, the potential
game Γn is expressed as

(Γn) : min
an,i∈Sn,i

Un,i(an,i, an,−i,a−n), ∀i ∈ Kn. (15)

We have the theorem as follows.
Theorem 1: In potential game Γn, when the utility function

Un,i of user n’s task i is given in (14), the potential function of
the game coincides with the cost function Tn of user n.

Proof: According to the definition of potential games, to
prove Theorem 1, we show that Un,i(a

′
n,i, an,−i,a−n) <

Un,i(an,i, an,−i,a−n) implies Tn(a
′
n,i, an,−i,a−n) <

Tn(an,i, an,−i,a−n). To facilitate the analysis, we next
consider three situations: a) an,i > 0 and a′n,i > 0; b) an,i > 0
and a′n,i = 0; c) an,i = 0 and a′n,i > 0.

First, we note the fact that Amin{B
A , 1} = Bmin{A

B , 1}
where A and B are both positive numbers, which is used in
the following derivations.

Here let dj,k,n,i = min{Dj,k

Dn,i
, 1}I{aj,k=an,i}, d′j,k,n,i =

min{Dj,k

Dn,i
, 1}I{aj,k=a′

n,i} and lj,k,n,i = min{Lj,k

Ln,i
, 1}I{aj,k>0}

for ease of presentation.
a) according to (14), we know that the condition

Un,i(a
′
n,i, an,−i,a−n) < Un,i(an,i, an,−i,a−n) implies that

Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +
N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

− Dn,i

Ba′
n,i

⎛
⎝ kn∑

k=1

d′n,k,n,i +
N∑
j=1

kj∑
k=1

d′j,k,n,i + 1

⎞
⎠ > 0. (16)

According to (10) and (16), we can derive that

Tn(an,i, an,−i,a−n)− Tn(a
′
n,i, an,−i,a−n)

=
1

kn

⎡
⎣ Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +
N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

− Dn,i

Ba′
n,i

⎛
⎝ kn∑

k=1

d′n,k,n,i +
N∑
j=1

kj∑
k=1

d′j,k,n,i + 1

⎞
⎠
⎤
⎦ > 0.

(17)

b) since an,i > 0, a′n,i = 0, and Un,i(a
′
n,i, an,−i,a−n) <

Un,i(an,i, an,−i,a−n), according to (14), we know that

Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +

N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

+
Ln,i

F c

⎛
⎝ kn∑

k=1

ln,k,n,i − 1 +

N∑
j=1

kj∑
k=1

lj,k,n,i

⎞
⎠

>
Ln,i

F l
n

⎛
⎝2

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} + 1

⎞
⎠ . (18)

According to (10) and (18), we can derive that

Tn(an,i, an,−i,a−n)− Tn(a
′
n,i, an,−i,a−n)

=
1

kn

⎡
⎣ Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +

N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

+
Ln,i

F c

⎛
⎝ kn∑

k=1

ln,k,n,i − 1 +

N∑
j=1

kj∑
k=1

lj,k,n,i

⎞
⎠

−Ln,i

F l
n

⎛
⎝2

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} + 1

⎞
⎠
⎤
⎦ > 0.

(19)

c) when an,i = 0 and a′n,i > 0, we can also show
that Un,i(a

′
n,i, an,−i,a−n) < Un,i(an,i, an,−i,a−n) implies

Tn(a
′
n,i, an,−i,a−n) < Tn(an,i, an,−i,a−n) by a similar anal-

ysis as in b).
Combining the results in the three situations above,

we now have shown that Un,i(a
′
n,i, an,−i,a−n) <

Un,i(an,i, an,−i,a−n) implies Tn(a
′
n,i, an,−i,a−n) <

Tn(an,i, an,−i,a−n). Then, according to the definition of
potential games, given user n’s task i’s utility function Un,i

in (14), the game Γn is the potential game together with its
potential function coinciding with the cost function Tn of user
n, and Theorem 1 gets proved. �

The solution of the potential game Γn is Nash equilibrium.
Monderer and Shapley have proven that in potential games, the
corresponding potential function is minimized either locally or
globally at Nash equilibrium [43]. According to Theorem 1, we
know the potential function of game Γn coincides with user
n’s cost function Tn. Hence, we conclude that Tn is minimized
either locally or globally at Nash equilibrium of Γn. Then, we
can achieve the goal of optimizing Tn by optimizing Un,i for
each task i, finally finding an approximate solution in polynomial
time.

Based on previous analysis, we re-formulate the multi-task
offloading problem as the game Γ = (T , {Sn,i}n∈N ,i∈Kn

,

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 37

{Un,i(an,i, a−(n,i))}n∈N ,i∈Kn
), where T = {(n, i)|n ∈ N , i ∈

Kn} represents the set of all tasks of all users, Sn,i represents
user n’s task i’s strategy space, and Un,i(an,i, a−(n,i)) in (14)
represents the utility function of user n’s task i. Then, the game
Γ is expressed as

(Γ) : min
an,i∈Sn,i

Un,i(an,i, a−(n,i)), ∀n ∈ N , i ∈ Kn. (20)

Here a−(n,i) denotes the decisions of all tasks of all users except
user n’s task i. Note that a = (an,i, a−(n,i)). Here the game Γ is
an approximate version of the original gameΓ0, and the solution
of Γ is also an approximate solution in polynomial time.

We next consider Nash equilibrium as the so-
lution of the computation offloading game Γ.
Specifically, in game Γ, a decision profile a∗ =
(a∗1,1, . . ., a

∗
1,k1

, a∗2,1, . . ., a
∗
2,k2

, . . ., a∗N,1, . . ., a
∗
N,kN

) is
regarded as the Nash equilibrium when no task of any
user can unilaterally change its decision at a∗ to decrease its
own utility function, and this is expressed as

Un,i(an,i, a
∗
−(n,i)) ≥ Un,i(a

∗
n,i, a

∗
−(n,i)),

∀n ∈ N , i ∈ Kn, an,i ∈ Sn,i. (21)

B. Existence of Nash Equilibrium

Here let’s discuss the existence of Nash equilibrium of game
Γ. As is known, there always exists the Nash equilibrium in
potential games [43]. Therefore, Nash equilibrium of Γ can be
proved to exist by showing that Γ belongs to potential games.

In order to prove that game Γ belongs to potential games, we
construct its corresponding potential function as

Φ(a) =

N∑
i=1

ki∑
j=1

(
1

2
Cc

i,j(a)I{ai,j>0} + Cl
i,j(a)I{ai,j=0}

)

+
1

2

N∑
i=1

ki∑
j=1

(
Di,jI{ai,j>0}

Bai,j

ki∑
k=1

min

{
Di,k

Di,j
, 1

}
I{ai,k=ai,j}

)

+
1

2

N∑
i=1

ki∑
j=1

(
Li,jI{ai,j>0}

F c

ki∑
k=1

min

{
Li,k

Li,j
, 1

}
I{ai,k>0}

)
.

(22)

Theorem 2: Given the potential function in (22), the compu-
tation offloading game Γ belongs to potential games.

Proof: Based on the definition of potential games, The-
orem 2 gets proved if we show that Un,i(an,i, a−(n,i)) >
Un,i(a

′
n,i, a−(n,i)) implies Φ(an,i, a−(n,i)) > Φ(a′n,i, a−(n,i)).

To facilitate the analysis, we next consider three situations: a)
an,i > 0 and a′n,i > 0; b) an,i > 0 and a′n,i = 0; c) an,i = 0 and
a′n,i > 0.

a) based on (14), we know the conditionUn,i(an,i, a−(n,i)) >
Un,i(a

′
n,i, a−(n,i)) implies that

Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +
N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

− Dn,i

Ba′
n,i

⎛
⎝ kn∑

k=1

d′n,k,n,i +
N∑
j=1

kj∑
k=1

d′j,k,n,i + 1

⎞
⎠ > 0. (23)

According to (22) and (23), we can derive that

Φ(an,i, a−(n,i))− Φ(a′n,i, a−(n,i))

=
1

2

⎡
⎣ Dn,i

Ban,i

⎛
⎝ N∑

j=1

kj∑
k=1

dj,k,n,i − 1

⎞
⎠+

Dn,i

Ban,i

N∑
j=1

kj∑
k=1

dj,k,n,i

− Dn,i

Ba′
n,i

N∑
j=1

kj∑
k=1

d′j,k,n,i −
Dn,i

Ba′
n,i

⎛
⎝ N∑

j=1

kj∑
k=1

d′j,k,n,i + 1

⎞
⎠
⎤
⎦

+
1

2

[
Dn,i

Ban,i

(
kn∑
k=1

dn,k,n,i − 1

)
+

Dn,i

Ban,i

kn∑
k=1

dn,k,n,i

− Dn,i

Ba′
n,i

kn∑
k=1

d′n,k,n,i −
Dn,i

Ba′
n,i

(
kn∑
k=1

d′n,k,n,i + 1

)]

=
Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +
N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

− Dn,i

Ba′
n,i

⎛
⎝ kn∑

k=1

d′n,k,n,i +
N∑
j=1

kj∑
k=1

d′j,k,n,i + 1

⎞
⎠ > 0. (24)

b) since an,i > 0, a′n,i = 0, and Un,i(an,i, a−(n,i)) >
Un,i(a

′
n,i, a−(n,i)), according to (14), we know

Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +
N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

+
Ln,i

F c

⎛
⎝ kn∑

k=1

ln,k,n,i − 1 +
N∑
j=1

kj∑
k=1

lj,k,n,i

⎞
⎠

>
Ln,i

F l
n

⎛
⎝2

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} + 1

⎞
⎠ . (25)

According to (22) and (25), we can derive that

Φ(an,i, a−(n,i))− Φ(a′n,i, a−(n,i))

=
1

2

⎡
⎣ Dn,i

Ban,i

N∑
j=1

kj∑
k=1

dj,k,n,i +
Dn,i

Ban,i

⎛
⎝ N∑

j=1

kj∑
k=1

dj,k,n,i − 1

⎞
⎠

+
Ln,i

F c

N∑
j=1

kj∑
k=1

lj,k,n,i +
Ln,i

F c

⎛
⎝ N∑

j=1

kj∑
k=1

lj,k,n,i − 1

⎞
⎠
⎤
⎦

− Ln,i

F l
n

⎛
⎝2

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} + 1

⎞
⎠

+
1

2

[
Dn,i

Ban,i

kn∑
k=1

dn,k,n,i +
Dn,i

Ban,i

(
kn∑
k=1

dn,k,n,i − 1

)]

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

38 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

+
1

2

[
Ln,i

F c

kn∑
k=1

ln,k,n,i +
Ln,i

F c

(
kn∑
k=1

ln,k,n,i − 1

)]

=
Dn,i

Ban,i

⎛
⎝ kn∑

k=1

dn,k,n,i − 1 +

N∑
j=1

kj∑
k=1

dj,k,n,i

⎞
⎠

+
Ln,i

F c

⎛
⎝ kn∑

k=1

ln,k,n,i − 1 +

N∑
j=1

kj∑
k=1

lj,k,n,i

⎞
⎠

− Ln,i

F l
n

⎛
⎝2

kn∑
j=1

min

{
Ln,j

Ln,i
, 1

}
I{an,j=0} + 1

⎞
⎠ > 0. (26)

c) when an,i = 0 and a′n,i > 0, we can also show
that Un,i(an,i, a−(n,i)) > Un,i(a

′
n,i, a−(n,i)) implies

Φ(an,i, a−(n,i)) > Φ(a′n,i, a−(n,i)) by a similar analysis as
in b).

Combining the results above, we now have proved the game
Γ belongs to potential games. �

According to Theorem 2, the game Γ belongs to potential
games. Hence, Nash equilibrium of Γ is proven to exist. At Γ’s
Nash equilibrium a∗, the strategy a∗

n of any user n, which is
the subset of a∗, is the Nash equilibrium of the corresponding
potential game Γn, which minimizes the cost function Tn either
locally or globally and is an approximate solution in polynomial
time for the original multi-task computation offloading problem.
Then, based on the formulated game Γ, we next propose an
efficient algorithm to find a∗.

V. COMPUTATION OFFLOADING ALGORITHM

In this section, we put forward the multi-task offloading solu-
tion in polynomial time via a Nash equilibrium of the gameΓ. In
order to achieve the Nash equilibrium, we propose ECO-GAME,
an Efficient multi-task Computation Offloading algorithm based
on the formulated GAME, as shown in Algorithm 1. We next
give the computational complexity analysis about the proposed
algorithm. We further conduct the performance evaluation on the
proposed algorithm by utilizing the metric of price of anarchy.

A. Algorithm Design

We next show the algorithm design in detail in this subsection.
As is known, there is a significant property of finite improvement
for potential games [43]. And we have already proved the gameΓ
belongs to potential games. Therefore based on the facts above,
let no more than one user improve one task’s decision in an
iteration and the iteration process is guaranteed to achieve the
Nash equilibrium after finite times, which is the core of the
ECO-GAME algorithm. In ECO-GAME, the iteration process
is completed in one time slot, which is carried out synchronously
by all users in parallel. Within the time slot t, the ECO-GAME
algorithm includes the following two phases:

a) Collecting task offloading cost: based on the decision
profile a(t) at slot t, the edge servers can calculate the task
offloading cost Cc

n,i(m, a−(n,i)(t)) for user n’s task i when
the task chooses to offload via the channel m ∈ M and the

Algorithm 1: Efficient Multi-Task Computation Offloading
Algorithm (ECO-GAME).

1: Initialization:
2: Let t = 0
3: Make decision an,i(t) = 0 of each user n’s task i
4: For all users in parallel:
5: repeat
6: for all i in Kn do
7: Collect the task offloading cost Cc

n,i(m, a−(n,i)(t))
for choosing each channel m ∈ M from edge
servers

8: Calculate Δn(t) (set of task decision update) using
(27)

9: if Δn(t) 	= ∅ then
10: Transmit the request for updating task decision to

edge servers
11: if Receive the approval from edge servers then
12: Compute the best task decision update (i∗, a∗) from

Δn(t) using (28)
13: Update decision an,i∗(t+ 1) = a∗

14: Let an,i(t+ 1) = an,i(t) for each of the other tasks
except task i∗

15: Send (i∗, a∗) to edge servers to update a(t+ 1) for
next slot

16: else
17: Let an,i(t+ 1) = an,i(t) for next slot for each of

the tasks
18: Update slot t = t+ 1
19: until Receive the end message from edge servers

decisions of other tasks are given in a(t), and report it to user n.
Here in Lines 6-7 of Algorithm 1, each user n collects the task
offloading cost Cc

n,i(m, a−(n,i)(t)) for its task i ∈ Kn when the
task chooses to offload via each channel m ∈ M, from the edge
servers.

b) Updating task decision: here allow only one user to
update its one task’s current decision, as in Lines 8-17 of
Algorithm 1. According to the task offloading cost (i.e.,
{Cc

n,i(m, a−(n,i)(t)), i ∈ Kn,m ∈ M}) collected in phase a),
each user n calculates the set of task decision update as

Δn(t) � {(i, a′) | i ∈ Kn,

a′ = arg min
a∈Sn,i

Un,i(a, a−(n,i)(t)) ∧

Un,i(a
′, a−(n,i)(t)) < Un,i(an,i(t), a−(n,i)(t))}. (27)

Based on the collected information, in the calculation of (27),
each user n does not need to know the related information
of the tasks of other users, such as data size, which ensures
privacy and confidentiality. The condition Δn(t) 	= ∅ implies
that user n expects to improve its one task’s decision such that
its cost gets reduced. In this case, user n transmits the request
for updating task decision to the edge servers. Otherwise, user n
transmits nothing. Then, the edge servers transmit the approval
to one user that is randomly selected from a set of users that

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 39

have transmitted requests. User k chooses the best task decision
update (i∗, a∗) from Δk(t) once it receives the approval. Here
(i∗, a∗) is computed as

i∗, a∗ = arg max
i,a∈Δk(t)

(
Uk,i(ak,i(t), a−(k,i)(t))

− Uk,i(a, a−(k,i)(t))
)
. (28)

Then user k will update the decision of task i∗ as ak,i∗(t+
1) = a∗, and keep the other tasks’ decisions unchanged as
ak,i(t+ 1) = ak,i(t) at next slot, where i 	= i∗. Then, user k
sends the task decision update (i∗, a∗) to edge servers to up-
date the decision profile a(t+ 1) at next slot. Users without
receiving the approval keep the tasks’ decisions unchanged as
an,i(t+ 1) = an,i(t) at next slot.

According to Theorem 2, ECO-GAME converges to the Nash
equilibrium of game Γ within finite slots. The edge servers
transmit the end message to all users when requests are no longer
received in a time slot, and ECO-GAME terminates when the
message is received by all users. Finally the decisions of users’
tasks in the last time slot are taken as their final decisions.

B. Computational Complexity Analysis

We next give the computational complexity analysis about
the ECO-GAME algorithm in this subsection. Within a time
slot, all users in parallel perform the operations in Lines
6-17 of ECO-GAME, the majority of which consist of some
basic mathematical computations. Here we care about the
calculations of the task decision update in Line 8 and the best
task decision update in Line 12. Let Kmax = maxi∈N {ki}. In
calculation of Δn(t) in (27), for each task i in Kn, user n first
calculates Un,i(a, a−(n,i)(t)) for all a in Sn,i with a complexity
of O(2(Kmax − 1)), and then finds the minimum of M + 1
values of Un,i with a complexity of O(M + 1), and finally a
comparison is needed with a complexity of O(1). Hence, the
complexity of calculating Δn(t) is O(Kmax(2Kmax +M)).
The calculation of (i∗, a∗) in (28) involves the maximum
operation over at most Kmax elements with a complexity of
O(Kmax). Hence, within a single time slot, the computational
complexity is O(Kmax(2Kmax +M + 1)). Here we can see
that, the larger the number of each user’s tasks as well as number
of wireless channels, the higher the computational complexity.
Denote C as the number of time slots required for ECO-GAME
to terminate. Thus the computational complexity in total is
O(CKmax(2Kmax +M + 1)). Let F l

max = maxi∈N {F l
i },

Bmax = maxm∈M{Bm}, Bmin = minm∈M{Bm}, K =∑N
i=1 ki and y = min{ 1

B2
max

, 1
BmaxF cF l

max
}. We have the

following result.
Theorem 3: When Dn,i, Ln,i, Bm, F c and F l

n are integers
for any n ∈ N , i ∈ Kn,m ∈ M, the number of time slots C for
convergence satisfies that

C ≤

⎡
⎣ N∑

i=1

ki∑
j=1

max

{
kiLi,j

F l
i

,
K

2

(
Di,j

Bmin
+

Li,j

F c

)}

+
1

2

N∑
i=1

ki∑
j=1

Di,jki
Bmin

+
1

2

N∑
i=1

ki∑
j=1

Li,jki
F c

−
N∑
i=1

ki∑
j=1

min

{
Li,j

F l
i

,
1

2

(
Di,j

Bmax
+

Li,j

F c

)}⎤⎦ /y. (29)

Proof: According to (22), we know that

N∑
i=1

ki∑
j=1

min

{
Li,j

F l
i

,
1

2

(
Di,j

Bmax
+

Li,j

F c

)}
≤ Φ(a)

≤
N∑
i=1

ki∑
j=1

max

{
kiLi,j

F l
i

,
K

2

(
Di,j

Bmin
+

Li,j

F c

)}

+
1

2

N∑
i=1

ki∑
j=1

Di,jki
Bmin

+
1

2

N∑
i=1

ki∑
j=1

Li,jki
F c

. (30)

Within a time slot, assume user n improves the task i’s
decision an,i to a′n,i to reduce user n’s cost. We next show this
results in a reduction of the corresponding potential function by
at least y, namely,

Φ(an,i, a−(n,i)) ≥ Φ(a′n,i, a−(n,i)) + y. (31)

Based on the proof of Theorem 2, we consider three situations:
a) an,i > 0 and a′n,i > 0; b) an,i > 0 and a′n,i = 0; c) an,i = 0
and a′n,i > 0.

a) since Dn,i and Bm are integers for any n ∈
N , i ∈ Kn,m ∈ M, according to (24), we have
Φ(an,i, a−(n,i))− Φ(a′n,i, a−(n,i)) ≥ 1

B2
max

≥ y. Here
we omit the derivation due to the space limitation.

b) since Dn,i, Ln,i, Bm, F c and F l
n are integers for any

n ∈ N , i ∈ Kn,m ∈ M, according to (26), we then have
Φ(an,i, a−(n,i))− Φ(a′n,i, a−(n,i)) ≥ 1

BmaxF cF l
max

≥ y.
Here we omit the derivation due to the space limitation.

c) we also have Φ(an,i, a−(n,i))− Φ(a′n,i, a−(n,i)) ≥ y by a
similar analysis as in b).

Therefore, according to (30) and (31), we can calculate the
upper bound of C as in (29). �

C. Price of Anarchy

So far, we have proposed the ECO-GAME algorithm to
achieve the Nash equilibrium solution. Now we conduct the per-
formance evaluation on the ECO-GAME algorithm by utilizing
the metric of price of anarchy (PoA) [44], which is commonly
used in game theory. Specifically, PoA is used to quantify the
performance gap between the approximate solution obtained by
the ECO-GAME algorithm and the optimal solution, from the
perspective of the system cost [35] which denotes the total cost
of all the users.

Here the PoA is defined as the ratio of the system cost between
the worst Nash equilibrium and optimal solution a∗, which is
denoted as

PoA =
maxa∈A

∑
n∈N Tn(a)∑

n∈N Tn(a∗)
. (32)

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

Here A denotes the set of Nash equilibria of game Γ. The
smaller PoA means the approximate solution obtained by
the algorithm has a better performance. Let Ci,j,max =

max{Li,j

F l
i

∑ki

k=1 min{Li,k

Li,j
, 1}, Di,j(K−M+1)

Bmin
+

Li,jK
F c },

Ci,j,min = min{Li,j

F l
i

,
Di,j

Bmax
+

Li,j

F c }, and Ci,j,ini =
Li,j

F l
i

∑ki

k=1 min{Li,k

Li,j
, 1}. We next provide the upper and

lower bounds for the PoA.
Theorem 4: From the perspective of the system cost, PoA for

the game Γ satisfies∑N
i=1

1
ki

min
{∑ki

j=1 Ci,j,ini,
∑ki

j=1 Ci,j,max

}
∑N

i=1
1
ki

∑ki

j=1 Ci,j,min

≥ PoA ≥ 1.

(33)
Proof: a∗ and a ∈ A denote the optimal solution, and an

arbitrary Nash equilibrium ofΓ respectively. Obviously, we have∑
n∈N Tn(a) ≥

∑
n∈N Tn(a

∗) and then PoA ≥ 1.
During the initialization of the algorithm, the decision

ai,j of each user i’s task j is 0 and the cost of user i

is 1
ki

∑ki

j=1
Li,j

F l
i

∑ki

k=1 min{Li,k

Li,j
, 1} = 1

ki

∑ki

j=1 Ci,j,ini. The
cost of user i gets reduced with the algorithm. Thus, for an
arbitrary Nash equilibrium a, we have

Ti(a) ≤
1

ki

ki∑
j=1

Ci,j,ini. (34)

For each user i’s task j, when ai,j = 0, we have
Ci,j(a) ≤ Li,j

F l
i

∑ki

k=1 min{Li,k

Li,j
, 1}. Obviously the number

of tasks that choose the channel with the bandwidth of Bmin

is at most K −M + 1. When ai,j > 0, we have Ci,j(a) ≤
Di,j(K−M+1)

Bmin
+

Li,jK
F c . Therefore, for user i’s task j, we have

Ci,j(a) ≤ max{Li,j

F l
i

∑ki

k=1 min{Li,k

Li,j
, 1}, Di,j(K−M+1)

Bmin
+

Li,jK
F c } = Ci,j,max. Thus, we have

Ti(a) ≤
1

ki

ki∑
j=1

Ci,j,max. (35)

According to (34) and (35), for any user i at a, we have that

Ti(a) ≤
1

ki
min

⎧⎨
⎩

ki∑
j=1

Ci,j,ini,

ki∑
j=1

Ci,j,max

⎫⎬
⎭ . (36)

For each user i’s task j at a∗, when a∗i,j = 0, we have

Ci,j(a
∗) ≥ Li,j

F l
i

. When a∗i,j > 0, we have Ci,j(a
∗) ≥ Di,j

Bmax
+

Li,j

F c . Therefore, for user i’s task j, we have Ci,j(a
∗) ≥

min{Li,j

F l
i

,
Di,j

Bmax
+

Li,j

F c } = Ci,j,min. Thus, for any user i at a∗,
we have that

Ti(a
∗) ≥ 1

ki

ki∑
j=1

Ci,j,min. (37)

According to (36) and (37), we have that

PoA =
maxa∈A

∑
n∈N Tn(a)∑

n∈N Tn(a∗)

TABLE II
SIMULATION ENVIRONMENT

TABLE III
SIMULATION PARAMETERS

≤
∑N

i=1
1
ki

min
{∑ki

j=1 Ci,j,ini,
∑ki

j=1 Ci,j,max

}
∑N

i=1
1
ki

∑ki

j=1 Ci,j,min

.

(38)

�

VI. NUMERICAL RESULTS

In this section, we implement numerous experiments to eval-
uate the ECO-GAME performance, which are conducted in the
PyCharm IDE on the laptop with 3.00 GHz Intel Core i7-9700
CPU and 16 GB RAM. The specific components used in the
simulation environment are shown in Table II. In our experi-
ments, unless otherwise noted, the simulation parameter settings
are as follows, as given in Table III. The parameters used in
our experiments are real-world values obtained from the recent
related works. Specifically, the coverage range of the wireless
base station is 50 m, where there are N = 30 users scattered
randomly like [35]. The number of computation tasks generated
by each user n is set to an integer taken from [1, 10] randomly
and uniformly [16]. The number of the wireless channels is set
to 5, that is, M = 5 [32], [35]. We set the channel bandwidth
Bm = 99.7 Mbps for channel m [8]. User n’s computation task
i’s data size Dn,i is drawn from [1, 500] Mb randomly and
uniformly [30]. User n’s task i’s number of CPU cycles Ln,i

is drawn from [1, 50] Gcycles randomly and uniformly [8].
According to [8], [20], the local computing capability F l

n is
drawn from a continuous uniform distribution on [0.5, 1.0] GHz.
Like [20], the total computing capability of MEC servers F c is
set to 100 GHz.

To evaluate the performance of the Nash equilibrium achieved
by the ECO-GAME algorithm in terms of computation cost, we
compare ECO-GAME with three baselines: 1) CCAT (Cloud
Computing by All Tasks): based on the communication and
computing resource allocation schemes proposed in this paper,
all users randomly choose the channels to offload all their tasks
to edge servers for execution. 2) LCAT (Local Computing by
All Tasks): each mobile device user performs all its tasks on

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 41

Fig. 1. Computation time cost of user_24’s 8 tasks in different slots (at the
top), computation time cost of 30 users in different slots (in the middle), and
system cost of time of 30 users in different slots and algorithm execution time
(at the bottom).

its device. 3) JPBR [20]: it considers the case of constrained
communication and cloud computing resources, and that both
communication and cloud computing resources allocated to each
task that chooses offloading remain unchanged within a compu-
tation offloading period. The results shown are the averages of
100 experiments, together with 95% confidence intervals.

A. Convergence of the ECO-GAME Algorithm

To verify the convergence of ECO-GAME, we apply the
ECO-GAME algorithm and show the results in Fig. 1. Specif-
ically, Fig. 1 shows the computation cost of user_24’s 8 tasks
in different slots (at the top), in which we use user_24 as the
representative user and we can see each task’s computation
cost (i.e., latency) keeps decreasing and finally stabilizes. This
demonstrates our ECO-GAME algorithm minimizes each user’s
cost while also reducing the computation cost of its each task,
thus ensuring the user’s QoS. Fig. 1 shows the computation cost
of 30 users in different slots in the middle, in which the user’s
computation cost keeps decreasing on the whole and eventually
stabilizes. Fig. 1 shows the system cost of 30 users in different
slots and the algorithm execution time at the bottom, in which
the system cost keeps decreasing and finally stabilizes. These
results indicate that the computation cost converges to a fixed
point of Nash equilibrium of the formulated game within finite
slots, which verify the convergence of ECO-GAME. Besides, we
can also see that the algorithm execution time increases linearly
with the number of slots and finally stabilizes, which indicates
ECO-GAME converges and terminates in a short time (less than
0.4 s), ensuring the real-time performance of ECO-GAME. This
ensures the user obtains the optimal offloading strategy quickly,
improving the user’s quality of experience.

Fig. 2. Number of slots with various numbers of tasks on each user.

Fig. 3. Number of slots with various user numbers.

Fig. 4. PoA and PoA upper bound with different number of users (at the left),
and with different number of tasks on each user (at the right).

Then we evaluate the convergence time of ECO-GAME in
Fig. 2 with different number of tasks on each user (the user
number N = 10), and in Fig. 3 with different number of users.
We can see that, when ECO-GAME converges, the number of
slots grows nearly linearly with the number of tasks on each user,
and the number of users, respectively. Therefore we conclude
that ECO-GAME converges quickly and scales well as the
number of tasks on each user increases and the number of users
increases.

Further we evaluate the algorithm performance of ECO-
GAME with the PoA and PoA upper bound under different
number of users and under different number of tasks on each
user respectively. And the results are shown in Fig. 4. We can
see that the results show the PoA is close to 1 in all cases which
means the performance of ECO-GAME is close to optimal.
Besides, PoA is fairly insensitive to the number of users and
the number of tasks on each user. The PoA upper bound is
smaller in the case of a small number of tasks on each user, since
in this case the ECO-GAME and the optimal solution prefer
the task computing locally. In short, the small performance gap
between the ECO-GAME and the optimal solution demonstrates
ECO-GAME has a good performance.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

Fig. 5. System cost with various lengths of the data size range (at the left),
where the mean data size is 250.5 Mb. System cost with various mean data sizes
(at the right), where the data size range length is 50.

B. Results With Different Data Sizes

To evaluate the performance of ECO-GAME with different
lengths of the data size (Dn,i) range, we first set the user number
N = 10 and conduct the experiments with various lengths of
the data size range, and show the results in Fig. 5. Note that
for different ranges, their mean values are set to be the same.
Fig. 5 shows the system cost under various lengths of the data
size range at the left, in which ECO-GAME can reduce cost
by up to 42.3%, 32.8% and 89.8% and reduce average cost
by 35.8%, 31.6% and 88.3% over JPBR, CCAT and LCAT,
respectively. This is because ECO-GAME makes more effi-
cient use of the constrained wireless communication resources.
ECO-GAME performs much better than LCAT, which illustrates
the benefits of computation offloading. Besides, ECO-GAME
performs better than JPBR with different length. This is because
that JPBR does not consider resources from the completed tasks
are re-allocated to the uncompleted tasks, seriously wasting the
limited resources, while ECO-GAME considers this case. When
the length is small, CCAT performs worse than JPBR, however,
CCAT performs better than JPBR as the length increases. This
is because that we adopt the bandwidth resource allocation
scheme proposed in this paper in CCAT, which re-allocates
the bandwidth from the transmission-completed tasks to the
transmission-uncompleted tasks. This illustrates the efficiency
of the bandwidth resource allocation scheme. ECO-GAME per-
forms better than CCAT. This is because ECO-GAME considers
that when too many computation tasks compete for limited
communication resources and cloud computing resources, some
of the tasks will choose local computing, thereby reducing users’
cost. While CCAT considers all tasks choose cloud computing
even if it’s more beneficial for some tasks to be performed
locally.

To evaluate the performance of ECO-GAME with different
mean data sizes, we first set the user number N = 10 and
run experiments with different mean data sizes, and show the
results in Fig. 5. Note that for different mean data sizes, their
corresponding range lengths are set to be the same. Fig. 5 shows
the system cost under various mean data sizes at the right, in
which ECO-GAME can reduce cost by up to 49.2%, 43.6% and
95.0% and reduce average cost by 34.1%, 29.3% and 87.6% over
JPBR, CCAT and LCAT, respectively. The system cost by ECO-
GAME, JPBR, and CCAT gets increased as the mean data size
increases, because larger mean data size for offloading incurs

Fig. 6. System cost with various lengths of the CPU cycles’ range (at the left),
where the mean CPU cycles are 25.5 Gcycles. System cost with various mean
CPU cycles (at the right), where the CPU cycles’ range length is 5.

larger transmission time delay. Besides, CCAT performs better
than JPBR when the mean data size is small, which indicates the
efficiency of the resource allocation schemes proposed in this
paper. When the mean data size is large, CCAT performs worse
than JPBR. This is because a larger mean data size leads to larger
transmission cost which seriously affects the performance of
task computation offloading, and CCAT considers all tasks are
offloaded for computation. ECO-GAME performs better than
JPBR and CCAT with similar analysis as in last paragraph.
Observe that LCAT performs much worse than ECO-GAME,
JPBR, and CCAT. To show the experimental results more clearly,
we remove LCAT in the following figures since it performs much
worse than the other three schemes, according to our large scale
experiment results in the following parts.

C. Results With Different CPU Cycles

To evaluate the performance of ECO-GAME with different
lengths of CPU cycles’ range (Ln,i), we first set the user number
N = 10 and conduct the experiments with various lengths of
the CPU cycles’ range at the same mean value, and show the
results in Fig. 6. Fig. 6 shows the system cost under various
lengths of the CPU cycles’ range at the left, in which ECO-
GAME can reduce cost by up to 42.3%, 30.8% and 89.8% and
reduce average cost by 25.5%, 21.6% and 88.1% over JPBR,
CCAT and LCAT, respectively. This is because ECO-GAME
makes more efficient use of the constrained MEC computing
resources. ECO-GAME performs better than CCAT and LCAT.
Besides, ECO-GAME performs better than JPBR as the length
increases. This is because that JPBR does not consider that the
computing resources from the computation-completed tasks are
re-allocated to the computation-uncompleted tasks, seriously
wasting the limited computing resources, while ECO-GAME
considers this case. When the length is small, CCAT performs
worse than JPBR, however, CCAT performs better than JPBR
as the length increases. This is because that we adopt the
computing resource allocation scheme proposed in this paper
in CCAT, which re-allocates the computing resources from the
computation-completed tasks to the computation-uncompleted
tasks. This illustrates the efficiency of the computing resource
allocation scheme.

In order to evaluate the impact of the mean CPU cycles on
ECO-GAME, we first set the user number N = 10 and conduct
the experiments with various mean CPU cycles with the same

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 43

Fig. 7. System cost with various numbers of tasks on each user.

length of the CPU cycles’ range, and show the results in Fig. 6.
Fig. 6 shows the system cost under various mean CPU cycles at
the right, in which ECO-GAME can reduce cost by up to 32.3%,
62.2% and 89.8% and reduce average cost by 18.3%, 23.3% and
84.2% over JPBR, CCAT and LCAT, respectively. The system
cost by ECO-GAME, JPBR, CCAT, and LCAT gets increased
as the mean CPU cycles increase, because larger mean CPU
cycles for computation incur larger execution time. Besides, with
different mean CPU cycles, ECO-GAME performs better than
JPBR. This is because that ECO-GAME considers resources
from the completed tasks are re-allocated to the uncompleted
tasks, while JPBR does not consider this case. ECO-GAME
performs better than CCAT. When the mean CPU cycles are
large, CCAT performs better than JPBR because we adopt the
computing resource allocation scheme proposed in this paper in
CCAT. This illustrates the efficiency of the computing resource
allocation scheme.

D. Results With Different Numbers of Tasks on Each User

To evaluate the performance of ECO-GAME with different
number of tasks on each user, we first set the user number N =
10 and run experiments with each user n having the number
of kn = 1, 2, 3, . . ., 10 tasks respectively, and show the results
in Fig. 7. Fig. 7 shows the system cost under various numbers
of tasks on each user, in which ECO-GAME can reduce cost
by up to 45.3%, 41.8%, and 90.1% and reduce average cost
by 34.6%, 29.3%, and 89.1% over JPBR, CCAT, and LCAT,
respectively. This demonstrates the efficiency of ECO-GAME.
Specifically, with different number of tasks on each user, ECO-
GAME performs better than JPBR. This is because ECO-GAME
considers resources from the completed tasks are re-allocated
to the uncompleted tasks. While JPBR does not take this into
consideration. Besides, CCAT performs better than JPBR on
the whole, which demonstrates the efficiency of the resource
allocation schemes proposed in this paper.

E. Results With Different Numbers of Users

To evaluate the performance of ECO-GAME with different
numbers of users, we conduct the experiments in the settings of
the user number N = 5, 10, 15, . . ., 50 respectively, and show
the results in Fig. 8. Fig. 8 shows the system cost under various
numbers of users, in which ECO-GAME can reduce cost by up
to 42.3%, 52.6%, and 93.5% and reduce average cost by 31.7%,
41.4%, and 78.6% over JPBR, CCAT, and LCAT, respectively.

Fig. 8. System cost with various numbers of users.

Fig. 9. System cost with various numbers of wireless channels.

This illustrates the efficiency of ECO-GAME. ECO-GAME
considers, in the case of constrained bandwidth and computing
resources, the reallocation of the bandwidth resources from the
transmission-completed tasks to the transmission-uncompleted
tasks, and of the computing resources from the computation-
completed tasks to the computation-uncompleted tasks. While
JPBR does not consider this. JPBR considers that, in the case
of constrained communication and cloud computing resources,
both communication and cloud computing resources allocated
to each offloaded task remain unchanged within a computation
offloading period. In short, the experimental results show that
ECO-GAME outperforms JPBR in the computation cost, which
indicates the effectiveness of the bandwidth and computing
resource allocation schemes proposed in this paper.

F. Results With Other Parameter Settings

To see the effects of the other parameter settings on the
experimental results, in this subsection we conduct additional
experiments with other parameter settings for a deeper study.
Specifically, we carry out the experiments with four kinds of
other parameter settings, and they are number of channels M ,
channel bandwidth Bm, local computing capability F l

n, and
computing capability of MEC servers F c respectively. The
corresponding results are shown in Figs. 9, 10, 11 and 12
respectively. In addition, we conduct a deeper study about the
special case of multiple users with single tasks, where we use
DMCO [32] that has investigated this special case as one of the
baselines to evaluate the efficiency of ECO-GAME. And the
results are shown in Fig. 13.

1) Parameter ofM : Fig. 9 shows the system cost under various
numbers of wireless channels, where M is set to 1, 2, 3, 4, 5
respectively. In Fig. 9, we can see that ECO-GAME reduces cost
by up to 25.1% and 74.4% and reduces average cost by 23.2%
and 58.0% over JPBR and CCAT respectively. 2) Parameter

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

Fig. 10. System cost with various channel bandwidths.

Fig. 11. System cost with various local computing capabilities.

Fig. 12. System cost with various MEC computing capabilities.

Fig. 13. System cost with various numbers of users with single tasks.

of Bm: Fig. 10 shows the system cost under various channel
bandwidths, where Bm is set to 10, 20, 30, ..., 100 respectively.
In Fig. 10, we can see that ECO-GAME reduces cost by up
to 25.1% and 83.8% and reduces average cost by 22.5% and
60.7% over JPBR and CCAT respectively. 3) Parameter of F l

n:
Fig. 11 shows the system cost under various local computing
capabilities, whereF l

n is set to 0.1, 0.3, 0.5, 0.8, 1.0 respectively.
In Fig. 11, we can see that ECO-GAME reduces cost by up to
29.9% and 95.0% and reduces average cost by 26.8% and 82.3%
over JPBR and LCAT respectively. 4) Parameter of F c: Fig. 12
shows the system cost under various computing capabilities of
MEC servers, where F c is set to 10, 20, 30, ..., 100 respectively.

In Fig. 12, we can see that ECO-GAME reduces cost by up to
25.1% and 66.2% and reduces average cost by 21.1% and 49.9%
over JPBR and CCAT respectively.

Fig. 13 shows the system cost under various numbers of users
with single tasks, where the number of users is set to 10, 20,
30, ..., 100 respectively and each user has only one single task.
In Fig. 13, we can see that ECO-GAME reduces cost by up to
14.2%, 26.5%, and 51.9% and reduces average cost by 9.5%,
16.2%, and 39.8% over DMCO, JPBR and CCAT respectively.
The results demonstrate the efficiency of ECO-GAME. ECO-
GAME outperforms DMCO since DMCO does not consider
the reallocation of cloud computing resources to uncompleted
tasks while ECO-GAME considers this. This also indicates the
effectiveness of the cloud computing resource allocation scheme
proposed in this paper.

We can draw the following conclusions from the above exper-
imental results. First, ECO-GAME outperforms JPBR, CCAT,
and LCAT in terms of the computation cost, which demon-
strates the effectiveness of ECO-GAME. Second, the system
cost by ECO-GAME, JPBR, CCAT, and LCAT gets reduced
as the values of the above four parameters increase, where
M and Bm correspond to communication resources and F l

n

and F c correspond to computing resources. This is because
the contention among tasks gets mitigated with the increase in
constrained resources. Third, the system cost by ECO-GAME
varies smoothly with these parameters, while the system cost
by CCAT and LCAT has a large variation, especially when the
parameter values are small. This is because CCAT offloads all
tasks to the edge (LCAT computes all tasks locally), which
is unwise in resource-constrained situations and may lead to
excessive computation cost. While ECO-GAME makes trade-
offs between the contentions among various limited resources
based on the current resource situation, and makes reasonable
offloading decisions, resulting in better performance.

VII. CONCLUSION

MEC serves mobile users with wireless communication and
cloud computing resources in the vicinity in mobile edge net-
works for low-latency computation offloading. However, ex-
isting works mostly consider the resources allocated to each
offloaded task keep unchanged during a computation offload-
ing period, leading to the constrained resource waste. Besides,
the majority of related works assume each user offloads one
task, whose solutions are not suitable for the realistic scenario
where each user has multiple computation tasks to offload. To
solve these problems, we propose efficient resource allocation
schemes for the multi-task offloading problem, which re-allocate
the resources from the completed tasks to the uncompleted tasks.
Taking response time into account, we utilize the game theoretic
approaches to formulate the multi-task offloading problem as the
strategic game, together with the analysis about the existence
of its Nash equilibrium. We then propose the ECO-GAME
algorithm to obtain an approximate solution in polynomial time
via the Nash equilibrium, together with the computational com-
plexity analysis and performance evaluation using PoA. The
experimental results indicate that ECO-GAME reduces 49.2%

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

CHU et al.: EFFICIENT MULTI-TASK COMPUTATION OFFLOADING GAME FOR MOBILE EDGE COMPUTING 45

cost than JPBR, and scales well as the number of tasks on each
user increases and the number of users increases.

For our work, the limitation is that we do not evaluate our
proposed algorithm in a real-world MEC system. And our future
direction is to apply our ECO-GAME algorithm into practice.
One possible way is to extend our model in the autonomous
driving scenarios, where the autonomous vehicles offload the
tasks of perception, prediction and planning to the nearby
infrastructures for execution. And the nearby vehicles whose
computation resources are under-utilized could also be used to
execute the offloaded tasks so as to relieve the infrastructure
overloads.

REFERENCES

[1] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A survey
on mobile augmented reality with 5G mobile edge computing: Architec-
tures, applications, and technical aspects,” IEEE Commun. Survey Tuts.,
vol. 23, no. 2, pp. 1160–1192, Second Quarter, 2021.

[3] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud com-
puting: Architecture, applications, and approaches,” Wireless Commun.
Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Commun. Survey
Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter, 2017.

[5] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet of Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[6] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation of-
floading in mobile edge computing networks: A survey,” J. Netw. Comput.
Appl., vol. 202, 2022, Art. no. 103366.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Survey Tuts.,
vol. 19, no. 3, pp. 1657–1681, Third Quarter, 2017.

[8] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic approach to
computation offloading strategy optimization in end-edge-cloud comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 6, pp. 1503–1519,
Jun. 2022.

[9] P. Apostolopoulos, G. Fragkos, E. Tsiropoulou, and S. Papavassiliou,
“Data offloading in UAV-assisted multi-access edge computing systems
under resource uncertainty,” IEEE Trans. Mobile Comput., vol. 22, no. 1,
pp. 175–190, Jan. 2023.

[10] Z. Ning et al., “Dynamic computation offloading and server deployment for
uav-enabled multi-access edge computing,” IEEE Trans. Mobile Comput.,
vol. 22, no. 5, pp. 2628–2644, May 2023.

[11] Z. Wan, D. Xu, D. Xu, and I. Ahmad, “Joint computation offloading and
resource allocation for noma-based multi-access mobile edge computing
systems,” Comput. Netw., vol. 196, 2021, Art. no. 108256.

[12] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for perva-
sive edge computing: A decentralized computation offloading algorithm,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425, Feb. 2021.

[13] S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, “Joint resource allocation and
computation offloading with time-varying fading channel in vehicular edge
computing,” IEEE Trans. Veh. Technol, vol. 69, no. 3, pp. 3384–3398,
Mar. 2020.

[14] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial compu-
tation offloading in collaborative edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 5, pp. 1133–1145, May 2021.

[15] P. Dai, Y. Huang, K. Hu, X. Wu, H. Xing, and Z. Yu,
“Meta reinforcement learning for multi-task offloading in vehicu-
lar edge computing,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2023.3247579.

[16] Y. Wu, B. Shi, L. Qian, F. Hou, J. Cai, and X. S. Shen, “Energy-efficient
multi-task multi-access computation offloading via NOMA transmission
for IoTs,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4811–4822,
Jul. 2020.

[17] J. Gao, Z. Kuang, J. Gao, and L. Zhao, “Joint offloading scheduling and
resource allocation in vehicular edge computing: A two layer solution,”
IEEE Trans. Veh. Technol, vol. 72, no. 3, pp. 3999–4009, Mar. 2023.

[18] I. Elgendy, W. Zhang, Y. Zeng, H. He, Y. Tian, and Y. Yang, “Efficient
and secure multi-user multi-task computation offloading for mobile-edge
computing in mobile IoT networks,” IEEE Trans. Netw. Service Manag.,
vol. 17, no. 4, pp. 2410–2422, Dec. 2020.

[19] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, and B. Lin, “NOMA assisted
multi-task multi-access mobile edge computing via deep reinforcement
learning for industrial internet of things,” IEEE Trans. Ind. Inform., vol. 17,
no. 8, pp. 5688–5698, Aug. 2021.

[20] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks,” IEEE Trans. Mobile
Comput., vol. 18, no. 1, pp. 207–220, Jan. 2019.

[21] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Survey Tuts., vol. 19, no. 3,
pp. 1628–1656, Third Quarter, 2017.

[22] Z. Liao et al., “Distributed probabilistic offloading in edge computing for
6G-enabled massive Internet of Things,” IEEE Internet Things J., vol. 8,
no. 7, pp. 5298–5308, Apr. 2021.

[23] W. Zhang, R. Yadav, Y. Tian, S. Tyagi, I. Elgendy, and O. Kaiwartya, “Two-
phase industrial manufacturing service management for energy efficiency
of data centers,” IEEE Trans. Ind. Inform., vol. 18, no. 11, pp. 7525–7536,
Nov. 2022.

[24] T. Nguyen, L. Le, and Q. Le-Trung, “Computation offloading in MIMO
based mobile edge computing systems under perfect and imperfect CSI
estimation,” IEEE Trans. Services Comput., vol. 14, no. 6, pp. 2011–2025,
Nov./Dec. 2021.

[25] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimiza-
tion for D2D-enabled partial computation offloading in mobile edge
computing,” IEEE Trans. Veh. Technol, vol. 69, no. 4, pp. 4472–4486,
Apr. 2020.

[26] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint computation parti-
tioning and resource allocation for latency sensitive applications in mobile
edge clouds,” IEEE Trans. Services Comput., vol. 14, no. 5, pp. 1439–1452,
Sep./Oct. 2021.

[27] X. Dai, Z. Xiao, H. Jiang, and J. C. S. Lui, “UAV-assisted task offloading
in vehicular edge computing networks,” IEEE Trans. Mobile Comput., to
be published, doi: 10.1109/TMC.2023.3259394.

[28] X. Dai et al., “Offloading dependent tasks in edge computing with unknown
system-side information,” IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2023.3320674.

[29] C. Sun, X. Wu, X. Li, Q. Fan, J. Wen, and V. C. M. Leung, “Cooperative
computation offloading for multi-access edge computing in 6G mobile
networks via soft actor critic,” IEEE Trans. Netw. Sci. Eng., to be published,
doi: 10.1109/TNSE.2021.3076795.

[30] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-latency
tradeoff for dynamic computation offloading in vehicular fog computing,”
IEEE Trans. Veh. Technol, vol. 69, no. 12, pp. 14 198–14 211, Dec. 2020.

[31] R. Yadav et al., “Smart healthcare: RL-based task offloading scheme for
edge-enable sensor networks,” IEEE Sensors J., vol. 21, no. 22, pp. 24
910–24 918, Nov. 2021.

[32] S. Chu, Z. Fang, S. Song, Z. Zhang, C. Gao, and C. Xu, “Efficient
multi-channel computation offloading for mobile edge computing: A
game-theoretic approach,” IEEE Trans. Cloud Comput., vol. 10, no. 3,
pp. 1738–1750, Third Quarter, 2022.

[33] Z. Xiao et al., “Multi-objective parallel task offloading and content caching
in D2D-aided MEC networks,” IEEE Trans. Mobile Comput., vol. 22,
no. 11, pp. 6599–6615, Nov. 2023.

[34] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[35] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[36] S. Jošilo and G. Dán, “Wireless and computing resource allocation for
selfish computation offloading in edge computing,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 2467–2475.

[37] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, “A review on
the computation offloading approaches in mobile edge computing: A
game-theoretic perspective,” Softw. Pract. Experience, vol. 50, no. 9,
pp. 1719–1759, 2020.

[38] S. Jošilo and G. Dán, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 667–680, Apr. 2020.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TMC.2023.3247579
https://dx.doi.org/10.1109/TMC.2023.3259394
https://dx.doi.org/10.1109/TSC.2023.3320674
https://dx.doi.org/10.1109/TNSE.2021.3076795

46 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 1, JANUARY/FEBRUARY 2024

[39] Q. Luo, C. Li, T. Luan, W. Shi, and W. Wu, “Self-learning based com-
putation offloading for internet of vehicles: Model and algorithm,” IEEE
Trans. Wireless Commun., vol. 20, no. 9, pp. 5913–5925, Sep. 2021.

[40] F. Chai, Q. Zhang, H. Yao, X. Xin, R. Gao, and M. Guizani, “Joint multi-
task offloading and resource allocation for mobile edge computing systems
in satellite IoT,” IEEE Trans. Veh. Technol, vol. 72, no. 6, pp. 7783–7795,
Jun. 2023.

[41] W. Fan et al., “Game-based task offloading and resource allocation for
vehicular edge computing with edge-edge cooperation,” IEEE Trans. Veh.
Technol, vol. 72, no. 6, pp. 7857–7870, Jun. 2023.

[42] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy aware
offloading for competing users on a shared communication channel,” IEEE
Trans. Mobile Comput., vol. 16, no. 1, pp. 87–96, Jan. 2017.

[43] D. Monderer and L. S. Shapley, “Potential games,” Games Econ. Behav.,
vol. 14, no. 1, pp. 124–143, 1996.

[44] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cambridge,
MA, USA: MIT Press, 2005.

Shuhui Chu received the BE and MS degrees in com-
puter science and technology from Jilin University,
Changchun, China, in 2017 and 2020, respectively.
She is currently working toward the PhD degree in
computer science with the University of Macau. Her
research interests include mobile edge computing,
game theory, and reinforcement learning.

Chengxi Gao (Member, IEEE) received the BS and
MS degrees from the Department of Computer Sci-
ence, Northeastern University, China, and the PhD de-
gree from the Department of Computer Science, City
University of Hong Kong. He is an assistant professor
with the Shenzhen Institute of Advanced Technology
(SIAT), Chinese Academy of Sciences (CAS). Before
joining CAS, he was a research associate with the
City University of Hong Kong. His research interests
include data center networking, networking system,
and computation offloading.

Minxian Xu (Member, IEEE) received the BSc and
MSc degrees in software engineering from the Uni-
versity of Electronic Science and Technology of
China, in 2012 and 2015, respectively, and the PhD
degree from the University of Melbourne, in 2019. He
is currently an associate professor with the Shenzhen
Institute of Advanced Technology, Chinese Academy
of Sciences. His thesis was awarded the 2019 IEEE
TCSC Outstanding PhD Dissertation Award. His re-
search interests include resource scheduling and op-
timization in cloud computing.

Kejiang Ye (Senior Member, IEEE) received the BSc
and PhD degrees from Zhejiang University, in 2008
and 2013, respectively. He was also a joint PhD stu-
dent with the University of Sydney from 2012 to 2013.
After graduation, he works as post-doc researcher
with Carnegie Mellon University from 2014 to 2015
and Wayne State University from 2015 to 2016. He is
currently a professor with the Shenzhen Institute of
Advanced Technology, Chinese Academy of Science.
His research interests focus on the performance, en-
ergy, and reliability of cloud computing and network
systems.

Zhu Xiao (Senior Member, IEEE) received the MS
and PhD degrees in communication and information
systems from Xidian University, China, in 2007 and
2009, respectively. From 2010 to 2012, he was a
research fellow with the Department of Computer
Science and Technology, University of Bedfordshire,
U.K. He is currently a full professor with the College
of Computer Science and Electronic Engineering,
Hunan University, China. His research interests in-
clude mobile edge computing, Internet of Vehicles,
and intelligent transportation systems. He is serving

as an associated editor of IEEE Transactions on Intelligent Transportation
Systems.

Chengzhong Xu (Fellow, IEEE) received the PhD
degree from the University of Hong Kong, in 1993. He
is currently a chair professor of computer science and
the dean with the Faculty of Science and Technology,
University of Macau. Prior to this, he was with the
Faculty of Wayne State University, USA, and the
Shenzhen Institute of Advanced Technology, Chi-
nese Academy of Science, China. He has published
more than 400 papers and more than 100 patents.
His research interests include cloud computing and
data-driven intelligent applications. He was the chair

of IEEE Technical Committee on Distributed Processing from 2015 to 2019.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 02,2024 at 02:41:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

