
TempoScale: A Cloud Workloads Prediction
Approach Integrating Short-Term and Long-Term

Information
Linfeng Wen1,2, Minxian Xu1, Adel N. Toosi3, Kejiang Ye1

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
2. University of Chinese Academy of Sciences, China

3. Faculty of Information Technology, Monash University, Australia
{lf.wen, mx.xu}@siat.ac.cn, adel.n.toosi@monash.edu, kj.ye@siat.ac.cn

Abstract—Cloud native solutions are widely applied in various
fields, placing higher demands on the efficient management and
utilization of resource platforms. To achieve the efficiency, load
forecasting and elastic scaling have become crucial technologies
for dynamically adjusting cloud resources to meet user demands
and minimizing resource waste. However, existing prediction-
based methods lack comprehensive analysis and integration of
load characteristics across different time scales. For instance,
long-term trend analysis helps reveal long-term changes in load
and resource demand, thereby supporting proactive resource
allocation over longer periods, while short-term volatility anal-
ysis can examine short-term fluctuations in load and resource
demand, providing support for real-time scheduling and rapid re-
sponse. In response to this, our research introduces TempoScale,
which aims to enhance the comprehensive understanding of
temporal variations in cloud workloads, enabling more intelligent
and adaptive decision-making for elastic scaling.

TempoScale utilizes the Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise algorithm to decompose time-
series load data into multiple Intrinsic Mode Functions (IMF) and
a Residual Component (RC). First, we integrate the IMF, which
represents both long-term trends and short-term fluctuations,
into the time series prediction model to obtain intermediate
results. Then, these intermediate results, along with the RC,
are transferred into a fully connected layer to obtain the final
result. Finally, this result is fed into the resource management
system based on Kubernetes for resource scaling. Our proposed
approach can reduce the Mean Square Error by 5.80% to 30.43%
compared to the baselines, and reduce the average response time
by 5.58% to 31.15%. The results demonstrate the effectiveness
of our proposed method in reducing violations of service-level
objectives and providing better performance in terms of resource
utilization.

Index Terms—cloud native, load prediction, auto-scaling, deep
learning, mode decomposition, transformer

I. INTRODUCTION

With the rise of cloud native and microservices architec-
ture, containerization technology has emerged as a crucial
innovation, profoundly altering the landscape of software

This work is supported by the National Natural Science Founda-
tion of China (No. 62102408), Shenzhen Industrial Application Projects
of undertaking the National key R & D Program of China (No.
CJGJZD20210408091600002), Shenzhen Science and Technology Program
(No. RCBS20210609104609044), and Chinese Academy of Sciences Presi-
dent’s International Fellowship Initiative (Grant. 2023VTB0005).

development and deployment [1]. Among these technologies,
Kubernetes (K8s), as an open-source container orchestration
platform, has provided a robust framework for automating the
deployment, scaling, and operation of application containers,
thereby significantly enhancing efficiency [2]. Nowadays, K8s
has been widely adopted by mainstream companies, including
Amazon, Google, and Microsoft.

However, as more and more enterprises adopt containerized
microservices architectures, and application scenarios continue
to evolve, limitations of the reactive strategy employed by the
default resource scheduler in K8s have become apparent [3].
For instance, under highly variable workloads, its applicability
is limited, leading to resource waste and a decrease in service
quality. Consequently, some enterprises are gradually shifting
towards predictive scaling methods. Predictive scaling not only
focuses on current loads but also involves analyzing historical
data, trends, and predictive models to forecast future loads and
make adjustments based on this analysis. The advantage of
this approach lies in proactively allocating resources, avoiding
the need for reactive measures when loads increase suddenly.
Currently, elastic scaling based on load forecasting has become
a crucial technology for effectively adjusting cloud resources
in dynamic environments to meet user needs and minimize
resource waste.

Applying a prediction-based strategy in a production envi-
ronment still faces several challenges: Firstly, the dynamics
and uncertainty of system and network workloads render
traditional static models inadequate when confronted with
complex and rapidly changing workloads [4], [5]. Addition-
ally, the diversity and heterogeneity of real-world workloads
further complicate predictions, making it difficult for a singular
approach to adapt to various scenarios and environments
[6]. Lastly, existing methods lack the ability to extract fea-
tures across different time sequences, resulting in a lack of
comprehensive understanding of the workloads. The inherent
dynamism of these clusters, the variability of workloads, and
the inherent limitations of the method itself, presents chal-
lenges that demand innovative solutions [7]. Therefore, this
research attempts to address these challenges by exploring and
extracting features such as CPU utilization at different time



scales, proposing a comprehensive load prediction method
that integrates both long-term and short-term time series
information.

In terms of long-term load forecasting, we have adopted
advanced time series and machine learning methods to process
and extract features from historical load data, establishing an
accurate long-term load forecasting model. Simultaneously,
to better capture instantaneous fluctuations in the system,
we construct an effective short-term load prediction model
through meticulous data sampling and feature extraction. To
integrate the information from long-term and short-term load
forecasting, we utilize the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) [8]
to decompose the load time series data. This step generates
multiple Intrinsic Mode Functions (IMFs) and a Residual
Component (RC), representing load changes at different time
scales. By integrating these IMFs and RC through a fully
connected layer, we obtain more comprehensive and detailed
load prediction results, enhancing the system’s robustness.

Finally, by developing elastic scaling decision rules based
on integrated load prediction, we make cloud computing
platforms more adaptable and able to flexibly adjust resource
allocation according to real-time load conditions. This method
not only improves the performance and stability of the system
but also effectively reduces resource costs and promotes the
sustainable development of cloud computing across various
scenarios.

The main contributions of this work are:
• We utilize CEEMDAN to divide the load into three

modes: IMF of long-term trend, IMF of short-term fluc-
tuation, and RC. This approach helps capture information
across both long-term and short-term time series by
separating features.

• We present TempoScale, a cloud workload prediction
method that integrates short-term fluctuations and long-
term trends. This approach enhances a comprehensive
understanding of temporal variations in loads, enabling
more intelligent and adaptive decision-making for elastic
scaling.

• We evaluate the effectiveness and availability of several
baselines through realistic traces and testbed. The results
demonstrate the effectiveness of our proposed method in
reducing violations of service level objectives (SLO) and
improving performance in terms of resource utilization.

II. MOTIVATION AND FEASIBILITY

Existing load forecasting methods often focus on either the
short-term fluctuations of the load or the long-term trends,
lacking an integrated model that combines both short-term
volatility and long-term trends. As shown in Fig. 1, utilizing
long-term trend analysis can reveal prolonged changes in load
and resource requirements, such as weekly or daily periodic
variations, supporting the proactive allocation of resources
over an extended period. On the other hand, employing short-
term volatility analysis allows for the examination of short-
term fluctuations in load and resource demands, including peak

(a) Long-Term Prediction that Shows Trend.

(b) Short-Term Prediction that Shows Instantaneous Fluctuations.

Fig. 1. The Focus Differs Between Long-Term and Short-Term Predictions
in Time Series Forecasting.

and off-peak loads, as well as sudden spikes, supporting real-
time scheduling and rapid response.

The integration of short-term volatility and long-term trends
in the study of load variations in large-scale systems can fur-
ther enhance the precision of models characterizing resource
requirements. This, in turn, provides robust support for the
performance optimization of elastic scheduling.

To illustrate the limitations of approaches focusing solely
on either short-term or long-term aspects, we conducted pre-
liminary forecasting experiments to calculate the Mean Square
Error (MSE) using experimental data from the Alibaba Clus-
ter1, which provides real production cluster traces. We selected
two representative models for long-term and short-term time
series prediction, namely Informer [9] and efficient supervised
learning-based Deep Neural Network (esDNN [10]). Informer,
based on the Transformer architecture, demonstrating sig-
nificant improvements in long-term predictive performance
compared to the original Transformer. On the other hand,
esDNN, based on Gated Recurrent Unit (GRU) [11], is an
algorithm used for short-term cloud load prediction. It adapts
to workload variations by updating GRU control gates, over-
coming limitations such as gradient vanishing and exploding.
For different forecast horizons, we employed esDNN and
Informer respectively for time series forecasting of loads. Each
experiment was repeated 10 times, and the experimental results
are presented in Table I. The collected results have all been
subjected to inverse normalization.

Fig. 2 illustrates that in short-term time series prediction,
particularly when the predicted time series length is less than
8 points (each point having a 30-second interval), Informer
performs noticeably worse than esDNN. On the other hand,
in long-term time series prediction, when the predicted time
series length exceeds 8 points, Informer outperforms esDNN
significantly. Moreover, as the time series length increases or

1https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018



TABLE I
PERFORMANCE COMPARISON OF SHORT-TERM (ESDNN) AND

LONG-TERM (INFORMER) PREDICTION.

History:Future esDNN
(MSE)

Informer
(MSE)

Informer is X%
better than esDNN

3:1 3.65 4.12 -12.88%

6:2 5.18 5.70 -10.04%

12:4 8.07 8.68 -7.56%

24:8 13.06 13.05 0.08%

48:16 19.61 18.87 3.77%

96:32 28.11 26.69 5.05%

192:64 37.53 33.71 10.18%

Fig. 2. Performance Comparison of Short-Term (esDNN) and Long-Term
(Informer) Prediction.

decreases, the performance gap becomes more significant. This
insight suggests the possibility of performance optimization
through the development of an integrated algorithm that com-
bines long-term and short-term time series prediction.

III. RELATED WORK

Many researchers have extensively investigated workload
forecasting, and these studies can be categorized into three
classes: 1) machine learning-based models, 2) neural network-
based models, and 3) attention mechanism-based models.

A. Traditional Machine learning-based models

Numerous studies have been dedicated to leveraging tradi-
tional machine learning models to enhance the accuracy and
efficiency of cloud workload prediction.

Prassanna et al. [12] proposed a new virtual machine con-
solidation technique, NMT-FOLS, which employs an Adaptive
Regressive Holt-Winters Workload Predictor to identify the
workload state and utilizes the prediction results to allocate
user-requested tasks to the optimal VM. Xie et al. [13]
proposed a hybrid model of ARIMA and triple exponential
smoothing, which accurately predicts both linear and nonlinear
relationships in the container resource load sequence. The
weighting values of the two different models are chosen
based on the sum of squares of their prediction errors over

a period of time. Biswas et al. [14] proposed a new Linear
Regression model to predict future CPU utilization, which is
described by a straight line and a mean point. The proposed
algorithm reduces energy consumption and SLA violation rates
in cloud data centers. Kholidy [15] developed a novel Swarm
Intelligence-Based Prediction Approach, which utilizes Parti-
cle Swarm Optimization to select optimal features from the
dataset and estimate parameters for the prediction algorithms.
Righi et al. [16] proposed a proactive elasticity model named
Proliot. The contribution of Proliot lies in its utilization of
a mathematical formalism employing ARIMA and Weighted
Moving Average for predicting the behavior of Internet of
Things load, enabling anticipation of scaling operations.

B. Neural network-based models

Traditional machine learning methods perform poorly when
dealing with complex features of cloud workloads. To more
effectively capture these features, researchers have turned to
more advanced learning methods, with deep learning being
particularly noteworthy [17], especially excelling in handling
large-scale, high-dimensional data, and nonlinear relation-
ships.

Dogani et al. [4] proposed an innovative approach utilizing
Bidirectional GRU and Discrete Wavelet Transformation to en-
hance the accuracy of host workload prediction. Xu et al. [10]
proposed an esDNN algorithm for cloud workload prediction,
which adapts to workload variations by updating the gates of
the GRU, overcoming the limitations of gradient disappearance
and explosion. Ruan et al. [18] proposed a deep learning-based
workload prediction method named CrystalLP that utilize
Long Short-Term Memory (LSTM) networks. Ouhame et al.
[19] proposed a Convolutional Neural Network (CNN) and
LSTM model for predicting multivariate workloads. It first
analyzes the input data using the vector autoregression method
to filter the linear correlations among multivariate data. Then,
it calculates the residual data and inputs it into the CNN layer
to extract complex features of each virtual machine usage
component.

C. Attention mechanism-based models

Attention mechanism is a new research field base on neural
networks in recent years, achieving significant success [20].
The core mechanism of attentional mechanisms involves fo-
cusing resources on key components of time series input while
filtering out irrelevant information [9]. Therefore, attention
mechanisms can enhance the model’s capability to capture
the dynamic changes in time series data, thereby enhancing
the performance of time series analysis and prediction tasks.

Zhou et al. [9] designed an efficient Transformer model
for Long Sequence Time Series Forecasting named Informer.
It employs the ProbSparse self-attention mechanism, self-
attention distilling by halving cascading layer input, and a
generative-style decoder, significantly improving the inference
speed for long sequence predictions. Zerveas et al. [21]
introduced a novel framework for multivariate time series
representation learning based on the Transformer encoder



TABLE II
RELATED WORK.

Work
Types of Prediction Methods Prediction Length Resource

Scaling
in Cloud

Machine
Learning

Neural
Network

Attention
Based

Single Multiple

Dogani et al. [4] ✓ ✓ ✓

Zhou et al. [9] ✓ ✓

Xu et al. [10] ✓ ✓ ✓

Prassanna al. [12] ✓ ✓ ✓

Xie et al. [13] ✓ ✓ ✓

Biswas et al. [14] ✓ ✓ ✓

Kholidy [15] ✓ ✓

Righi et al. [16] ✓ ✓

Ruan et al. [18] ✓ ✓

Ouhame et al. [19] ✓ ✓

Zerveas et al. [21] ✓ ✓

Wang et al. [22] ✓ ✓

Wu et al. [23] ✓ ✓

This paper ✓ ✓ ✓ ✓

architecture. The framework incorporates an unsupervised pre-
training scheme, which offers substantial performance benefits
over fully supervised learning in downstream tasks. Wang et al.
[22] proposed a novel method for time series prediction, lever-
aging the Transformer with a multiscale CNN. It consists of
multiscale extraction and multidimensional fusion frameworks.
Wu et al. [23] designed Autoformer as a novel decomposition
architecture with an Auto-Correlation mechanism, breaking
the preprocessing convention of time series decomposition
and transforming it into a fundamental building block of deep
models. This design empowers Autoformer with progressive
decomposition capabilities for complex time series.

D. Critical analysis

We summarize and compare the related work in Table II.
Models based on traditional machine learning are mostly effec-
tive for workloads with clear patterns, but the high variability
and non-linearity of modern cloud workloads make these mod-
els less effective [24]. Neural network-based models may face
issues like gradient vanishing or exploding when dealing with
long sequences, especially in tasks that require considering
long-term dependencies. This can make it challenging for
the model to capture and learn effective information over
extended time intervals. Transformer-based models, leveraging
attention mechanisms, excel in long-time sequence prediction
tasks, significantly improving performance. However, they
also come with drawbacks, such as larger parameter sizes,
complex tuning processes, and higher resource costs, leading
to increased usage expenses.

Therefore, this study proposes a predictive algorithm that
integrates both long-term and short-term temporal features,
enabling better capture of dependencies in time series data.
Utilizing long-term trend analysis to reveal the extended
variations in load and resource demands supports proactive
resource allocation over more extended periods. Additionally,
employing short-term volatility analysis examines the short-
term variations in load and resource demands, facilitating real-
time scheduling and rapid responsiveness. The main difference
between our work and others is that we focus more on

studying the characteristics of time series data across different
dimensions. We employ different types of models to process
them, enabling us to leverage strengths effectively.

IV. TEMPOSCALE: A RESOURCE SCHEDULER
INTEGRATING SHORT-TERM AND LONG-TERM

INFORMATION

In order to address the inherent dynamics of clusters and the
variability of workloads, we propose an innovative solution in
this work called TempoScale. The architecture of TempoScale
is illustrated in Fig. 3, the module ① represents a server cluster,
we have implemented a prototype system and deployed a
resource scheduler and a resource monitor2,3, enabling real-
time monitoring and resource control of the server cluster,
the module ② illustrates the TempoScale algorithm, which
involves three steps: 1) preprocessing of data and decomposi-
tion of IMFs, 2) processing intermediate results using different
models, and 3) obtaining the final results through a Multilayer
Perceptron (MLP). In the following sections, we will focus on
providing a detailed description of these steps.

Fig. 3. The Architecture of TempoScale.

A. Preprocessing of data and decomposition of IMFs

TempoScale processes raw data exported from the moni-
toring system of a cloud cluster ,the monitoring system of
the cloud cluster records major resource usage such as CPU,
memory, disk, and network. Among these resources, CPU is
considered as the most crucial and dominant resource in the
computer system, and we primarily focus on the usage of
CPU. Initially, TempoScale removes rows containing empty
and anomalous data as they can negatively impact predictive
data. Subsequently, TempoScale calculates the average value
for each parameter with the same timestamp, represented as
a time-ordered sequence X(x1, x2, ..., xt) with constant time
intervals. Then, it normalizes the data to enhance the model’s
convergence speed and prediction accuracy. TempoScale uti-
lizes Z-score for this purpose. Z-score normalization assumes

2https://prometheus.io/
3https://github.com/kubernetes-sigs/metrics-server



that the data approximates a normal distribution. This nor-
malization method helps eliminate scale differences between
different features. Z is calculated using Eq. (1):

Z =
(X − µ)

σ
=

X − 1

n

n∑
i=1

Xi√√√√ 1

n

n∑
i=1

(Xi −
1

n

n∑
i=1

Xi)2

, (1)

where X represents the original data, n is the number of data
points, µ is the mean of the original dataset, σ is the standard
deviation of the dataset, and Z is the standardized data value.

Fig. 4. Modal Decomposition for Feature Extraction.

After preprocessing the data, it is necessary to separately
extract the long-term and short-term features of the time-series
data for subsequent load forecasting. As shown in Fig. 4,
modal decomposition decomposes complex signals into IMFs,
enhancing the clarity of signal analysis and demonstrating
excellent localization in the time-frequency domain. This fa-
cilitates a more accurate exploration of the local characteristics
of signals. TempoScale leverages the inherent advantages of
modal decomposition in time-series feature extraction, which
naturally divides preprocessed data into two IMFs and a RC.
The two IMFs represent the long-term and short-term features
of the time-series data, respectively, and are then used as inputs
for subsequent models. As illustrated in Algorithm 1, the
algorithm mainly consists of five steps: Initializing Param-
eters, Ensemble Generation, Ensemble Mean, Adaptive
Noise, and Sifting Process. First, parameters are initialized
to set up various necessary parameters for the algorithm (lines
1-7). Then, multiple ensemble trial instances are generated
by Empirical Mode Decomposition (EMD) to evaluate the
algorithm’s robustness under different data variations (lines
8-13). Next, the ensemble means and adaptive noise for each
IMF are computed to enhance the accuracy of extracting the
actual signal features (lines 14-21). Finally, the sifting process
iteratively extracts IMFs and separates the residual signal,
achieving the decomposition of the original signal (lines 22-
28).

Algorithm 1 Performing Long-Term and Short-Term Feature
Segmentation on the Data Within TempoScale.
Require: Signal x(t)
Ensure: Set of IMFs {ci(t)} and RC r(t)

1: Initialize parameters:
2: N - Number of ensemble trials
3: M - Number of sifting iterations
4: T - Signal length
5: t - Time index
6: ci(t) - Initial IMF estimate
7: r(t) - RC
8: α - Sifting parameter
9: Ensemble Generation:

10: for i = 1 to N do
11: Generate white noise series wi(t)
12: Add white noise to the signal: yi(t) = x(t) + wi(t)
13: Perform EMD on yi(t) to obtain IMF set:

{ci,1(t), ci,2(t)}
14: end for
15: Ensemble Mean:
16: for k = 1 to 2 do
17: Compute ensemble mean of each IMF: c̄k(t) =

1
N

∑N
i=1 ci,k(t)

18: end for
19: Adaptive Noise:
20: for k = 1 to 2 do
21: Compute adaptive noise for each IMF: ak(t) =√

1
N

∑N
i=1(ci,k(t)− c̄k(t))2

22: end for
23: Sifting Process:
24: for m = 1 to M do
25: Extract the RC: r(t) = x(t)−

∑2
k=1 ck(t)

26: for k = 1 to 2 do
27: Sift the IMF: c̃k(t) = ck(t) + αak(t)
28: end for
29: end for

B. Processing intermediate results using different model

After modal decomposition, two IMFs representing long-
term trends and short-term fluctuations will be fed into the
prediction module composed of a model based on Transformer
and GRU architectures (feasibility has been validated in Sec-
tion II).

1) Short-term prediction model: The GRU is a type of RNN
architecture designed for capturing dependencies and patterns
in time series data. The gating mechanisms in GRU allow the
network to selectively update and memorize information in
the hidden state, enabling it to focus on relevant information
while avoiding the long-term dependency issues that can lead
to vanishing or exploding gradients. This makes GRU effective
at capturing short-term patterns in time series data.

Assuming at time step t, given input xt, the previous hidden
state ht−1, and the parameters W of the GRU, we can compute
the update gate zt, the reset gate rt, and the candidate hidden



state h̃t at the current time step [11]:

zt = σ(Wz · [ht−1, xt]), (2)

rt = σ(Wr · [ht−1, xt]), (3)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt]), (4)

where σ is the sigmoid function, ⊙ denotes element-wise
multiplication, [·] indicates matrix multiplication, and tanh
represents the hyperbolic tangent function, which is a type
of nonlinear activation function:

tanh(x) =
ex − e−x

ex + e−x
. (5)

Then, based on the update gate zt and the candidate hidden
state h̃t, we can compute the current hidden state ht as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (6)

where the update gate zt controls the balance between the past
hidden state ht−1 and the new candidate hidden state h̃t. If zt
is close to 1, the model retains more of the past information; if
zt is close to 0, the model relies more on the new information.
The reset gate rt controls the influence of the past hidden state
in computing the candidate hidden state h̃t.

Through this gating mechanism, GRU effectively captures
long-term dependencies and performs well in handling sequen-
tial data. Therefore, we adopt the algorithm based on GRU
[10] as our short-term prediction model in TempoScale.

Fig. 5. The Network Structure of Short-term Prediction Model in TempoScale.

The short-term forecasting algorithm used in TempoScale is
depicted in Fig. 5. First, the data is fed into a 1D CNN, which
can extract features from time series data and model the short-
term correlations between the time series data and subsequent
trends [25]. The convolved data is then input into a two-
layer GRU network, and finally, the activation function ReLU,
regularization, and dense layers are applied to generate the
final output. This comprehensive approach ensures a refined
and well-optimized prediction based on the extracted features
and short-term correlations captured during the earlier stages
of processing.

2) Long-term prediction model: Methods based on at-
tention mechanisms typically perform exceptionally well in
addressing long time series prediction problems because at-
tention mechanisms enable the model to better focus on
different parts of the time series, thereby capturing long-term
dependencies more effectively. In self-attention mechanisms,
each element in a sequence interacts with every other element
to compute weights. Specifically, for each attention head i,
the attention score matrix Attentioni can be calculated using
Eq. (7):

Attentioni = softmax
(
Qi ·KT

i√
dk

)
·Vi. (7)

Here, Qi, Ki, and Vi are the query, key, and value matrices
for the i-th head, and dk is the dimension of the key vectors.
The attention mechanism calculates attention weights to de-
termine the contribution of each element. This way, the model
can dynamically adjust weights based on the specific content
of the input sequence, better capturing long-term dependencies
and important patterns in the sequence.

However, transformer-based models need to address signif-
icant time and resource consumption issues. Many methods
have been proposed to improve the performance and speed
of attention-based models, reduce memory usage, and make
them applicable to a wider range of time series prediction
problems. For example, the original self-attention mechanism
requires performing full connectivity computations across the
entire input sequence, which can lead to prohibitively high
computational costs for long sequences. As shown in Eq. (8),
ProbSparse self-attention [9] addresses this issue by introduc-
ing a sparsity-inducing mechanism, selectively interacting with
only a subset of input positions based on probabilities, thereby
reducing computational complexity while preserving model
performance to some extent. We applied this mechanism to
TempoScale, significantly reducing time costs and improving
computational efficiency.

M (qi,K) = ln

LK∑
j=1

e

qik
⊤
j√

dk − 1

LK

LK∑
j=1

qik
⊤
j√

dk
. (8)

In Eq. (8), M(qi,K) represents the function computing the
attention score, where qi is the query vector and K is the set of
key vectors. The query vector qi measures similarity between
queries and keys, while K represents the keys in the attention
mechanism. Each kj is an element of the key vectors set
with a length LK . The equation aims to compute the attention
score efficiently, capturing the relationships between queries
and keys.

Self-attention distillation [9] aims to solve this problem by
extracting the essential information captured by a large self-
attention mechanism into a smaller one, while maintaining
or even improving the model’s performance. This method is
implemented by integrating multiple pooling layers, as shown
in Eq. (9):

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

([
Xt

j

]
AB

)))
. (9)



In Equation (9), Xt
j+1 represents the feature representation

of layer j + 1 at time step t, which is obtained by applying a
convolution operation followed by an Exponential Linear Unit
(ELU) activation function, and then a max-pooling operation.
The max-pooling operation selects the maximum value in each
channel of the input tensor based on a specified window size,
while the ELU activation function has a non-zero gradient in
the negative region to alleviate the vanishing gradient problem.
The convolution operation convolves the input tensor with a
convolutional kernel to generate an output tensor, applied here
to

[
Xt

j

]
AB

representing the feature representation of layer j
at time step t, where AB denotes a specific slice or subset
selection. This equation describes the process of generating the
feature representation of the next layer through convolution,
activation, and max-pooling operations, where each operation
can be controlled by adjusting parameters to influence the fea-
ture extraction process of the model. Applying this mechanism
to TempoScale enables the solution of prediction problems
with longer sequences.

In traditional sequence generation tasks, each output is
generated one at a time in a left-to-right manner, which can
be slow and computationally expensive. The One Forward
Decoder [9] directly generates the entire long sequence with-
out the need for individual generation, thus speeding up the
generation process and reducing computational costs.

The aforementioned techniques contribute to enhancing
the performance of transformer-based models while reducing
time and memory overheads. TempoScale incorporates these
techniques into its long-term prediction module to facilitate
the execution of long-term forecasts.

C. Obtaining the final results through a MLP

In the end, the output of long-term and short-term prediction
models, along with RC calculated in Algorithm 1, is fed
into a MLP in TempoScale to obtain a final long-term time
series prediction result for scaling. The MLP introduces non-
linear transformations and higher-level feature representations,
enabling more flexibility in capturing complex relationships
between inputs and enhancing the model’s understanding and
generalization capabilities. In TempoScale, the MLP’s input
layer consists of 144 neurons, the output layer has 48 neurons,
and there are 4 hidden layers with 192, 240, 240, and 192
neurons, respectively, all with ReLU activation functions.

Subsequently, the results are fed into the resource manage-
ment system of a cloud cluster for resource auto-scaling. This
step involves using the model’s output to make resource man-
agement decisions, determining whether to allocate additional
resources or remove excess resources. The overall goal of this
process is to achieve more intelligent and efficient resource
allocation, optimizing the performance of the entire system.

V. PERFORMANCE EVALUATIONS

In this section, we provide a detailed description of the
dataset used and the experimental configurations. Addition-
ally, we conducted experiments on the cluster to compare

the performance of TempoScale with several state-of-the-
art approaches. The results validate that TempoScale can be
effectively applied to optimize cloud resource usage.

A. Experimental setup

TempoScale is mainly developed using Python 3.9. Re-
source scaling is performed every 15 seconds, and load
prediction is conducted every 12 minutes. Load prediction
utilizes data from the past 48 minutes to forecast the next
12 minutes. As shown in Table I and [9], the longer the
predicted length, the greater the potential for improvement.
Therefore, we’ll take an intermediate value of 48 minutes
for the prediction time length, and a prediction length of
12 minutes provides the system with a sufficient resource
scheduling time [26]. All performance tests were conducted
using a K8s cluster consisting of one master and two worker
nodes. The operating system used was CentOS-7, with each
node having 4 GB of memory and 4 CPU cores. The workload
dataset, microservices demo application, and baseline methods
used in the experiments are as follows:

Fig. 6. CPU Utilization of MS 10489 Over Time.

1) Workload dataset: We used the dataset from the Al-
ibaba Cluster4, which was collected from Alibaba production
clusters consisting of over ten thousand bare-metal nodes
over a period of 13 days in 2022. One of the datasets,
named MSResource, records CPU and memory utilization of
over 470,000 containers for more than 28,000 microservices
in the same production cluster. It includes attributes such
as timestamp, msname, msinstanceid, nodeid, cpu utilization,
and memory utilization. This dataset accurately represents the
workload characteristics of current large-scale cloud clusters.
We utilized this dataset as input for workload simulation to
evaluate the performance and reliability of applications or
systems under various workload conditions. For experimental
evaluation, we select a microservice named MS 10489, illus-
trating the variation in its resource utilization rates in Fig. 6.

2) Microservices demo application: Sock Shop5 is a mi-
croservice application commonly used for testing purposes. It
is an open-source demo application designed to demonstrate
best practices in developing cloud native applications. Sock

4https://github.com/alibaba/clusterdata/tree/master/cluster-trace-
microservices-v2022

5https://microservices-demo.github.io/



Fig. 7. The Profiling Between QPS and CPU Utilization.

Shop simulates an online shopping platform and consists of
eight microservices, each serving a specific function such as
shopping carts, payments, and inventory.

3) Baseline methods: The three baseline methods used in
our experiments are state-of-the-art and representative methods
of the three categories discussed in Section III.

1) ARIMA [27]: It effectively captures trends and sea-
sonality in time series data. Due to its simplicity and
widespread application, ARIMA is often used as a
standard for comparing the performance of other time
series forecasting models.

2) esDNN [10]: This is an optimized method based on
GRU. It is designed to be simple, with fewer parameters,
easy to train, and computationally efficient. It serves as
an ideal benchmark for capturing sequential patterns in
various tasks..

3) Informer [9]: This is an improved method based on
Transformer. Due to its outstanding performance in
sequence tasks and the effectiveness of its self-attention
mechanism in handling long-term dependencies, it is the
preferred benchmark method for many sequence data
processing tasks.

B. Profiling

Due to the varying relationship between CPU utilization and
Queries Per Second (QPS) on each machine, which depends
on factors such as hardware configuration, load characteristics,
and the running software system, it is necessary to establish the
profile between CPU utilization and QPS before starting the
experiment. This helps determine the expected CPU utilization
levels at different QPS levels, ensuring the accuracy and
comparability of the experimental results. The profiling results
are shown in Fig. 7, the experimental results are similar to
those of previous work [28].

C. Predictive Evaluation

Table III presents the forecast results of ARIMA, esDNN,
Informer, and TempoScale on Alibaba’s 2022 trace data,
evaluated using the Mean Square Error (MSE), coefficient

TABLE III
COMPARISON OF PREDICTION RESULTS FROM DIFFERENT METHODS.

Method ARIMA esDNN Informer TempoScale

MSE 0.000099 0.000085 0.000073 0.000069
MAPE 0.049752 0.047577 0.048178 0.044682

R2 0.359305 0.400834 0.358701 0.365229

of determination (R2), and Mean Absolute Percentage Error
(MAPE), The equations are as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (10)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100, (11)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (12)

where n is the sample size, yi represents the ith observed
value, ŷi represents the model’s predicted value for the ith
observation, ȳ represents the mean of the observed values.

As shown in Table III, we have highlighted the best value
for each metric. Assessment metrics are calculated on a per-
prediction-period basis, and the displayed results have all been
subjected to inverse normalization. The data demonstrates that
our proposed method, TempoScale, outperformed others in
terms of both MSE and MAPE. Specifically, in terms of
MSE, TempoScale outperforms ARIMA by 30.43%, esDNN
by 18.78%, and Informer by 5.80%. In terms of MAPE,
TempoScale outperforms ARIMA by 10.19%, esDNN by
6.08%, and Informer by 7.26%. Although it did not yield the
highest result in terms of R2, it remained at a satisfactory level.
The above results suggest that TempoScale exhibits higher
accuracy and reliability in forecasting Alibaba Cloud workload
data.

To investigate the impact of forecast length on accuracy,
we selected a subset of forecast results (1500 data points,
with each data point representing one minute) for visualization.
Fig. 8(a) illustrates the forecast results for the first time slice
within the forecasting period, demonstrating the outstanding
performance of ARIMA, with its predictions almost perfectly
aligning with the actual data. Fig. 8(b) demonstrates the fore-
cast results for the last time slice within the forecasting period.
Upon inspection in the zoomed-in figure, it is evident that
Informer and esDNN either underestimated or overestimated
the actual data, whereas TempoScale was able to predict the
actual data more accurately.

In order to study the impact of time steps on prediction
accuracy, we conducted statistical calculations to analyze the
variations in performance metrics across different time steps.
It is evident from Fig. 9 that the performance of ARIMA
deteriorates almost linearly with the increase in the length
of the time interval, as indicated by MSE, MAPE, and R2

in Fig. 9(a), Fig. 9(b), and Fig. 9(c). The reason lies in



(a) The First Time Step of the Prediction Interval. (b) The Last Time Step of the Prediction Interval.

Fig. 8. Comparison Between Predicted and Actual Values Based on Alibaba Dataset.

(a) MSE. (b) MAPE. (c) R2.

Fig. 9. Comparison of Prediction Performance Under Different Time Steps Based on Alibaba Dataset.

that ARIMA may overly rely on the most recent historical
data in time series forecasting tasks, treating this segment as
the prediction result while overlooking earlier historical data
variations. This behavior could lead to a strong correlation
between the prediction results and the most recent historical
data segment. Conversely, the degradation rate of performance
for esDNN and Informer is relatively slower, this results
from that they are able to effectively model long-term depen-
dencies, capturing long-term correlations in time series data
through techniques such as self-attention mechanisms, thereby
maintaining good performance even with longer time steps.
TempoScale combines the advantages of both, thereby exhibits
nearly the slowest deterioration in performance, demonstrating
its outstanding performance in long-term forecasting.

D. Workload Prediction with Auto-Scaling Evaluation

The benefits of auto-scaling lie in its ability to effectively
manage costs and improve system performance and avail-
ability. By automatically adjusting resource usage based on
actual workload, this technology avoids resource waste and
shortages, thus saving costs. Additionally, it ensures system
performance during high workloads and reduces resource us-
age during low workloads, enabling efficient system operation.

Therefore, to further demonstrate the capability of the pro-
posed method and develop an efficient auto-scaling approach,

we integrate methods including ARIMA, esDNN, Informer
and TempoScale into the prototype system based on K8s
developed by us are conducted to evaluated.

We first simulate workload variations in a real cluster
environment using Locust6, based on the results of the profiled
data in Section V-B. Then, we utilize the elastic scaling sys-
tem integrated with workload prediction methods to evaluate
the effectiveness of this method in cost management and
performance improvement. We focus on vertical scaling of
containers, with predictions operating on a 12-minute cycle.
Vertical scaling involves adjusting the resource configuration
of individual instances, such as increasing the CPU quota or
memory limit of containers in a containerized environment.
The amount of scaling operations is based on the predictions
of CPU usage. Our goal is to enhance system performance by
minimizing response time and avoiding SLO violations while
keeping the total resource budget constant. Here, the resource
budget refers to the cumulative product of resource supply
within each time unit, represented as

∫
Rt dt, where Rt is the

resource provided at time t.
In the experiments, detailed average response time is shown

in Fig. 10, while CPU allocation is depicted in Fig. 11,
with units in milli-cores (m), this unit of measurement is

6https://locust.io/



Fig. 10. Comparison of Average Response Times during Runtime.

Fig. 11. Comparison of CPU Allocation during Runtime.

commonly used to specify the amount of CPU resources
that an application or container can utilize in cloud com-
puting and containerized environments. The figures include
CPU allocation, average response time, and workload size
for each method during runtime. Additionally, QPS values
are plotted on the secondary axis of each figure to facilitate
direct comparison. From the figures, it can be observed that
during the initial stable workload phase, all four methods
maintain system stability with relatively low average response
times. However, in the long-term stages, workload spikes and
variations lead to varying degrees of response time increases.
Notably, TempoScale demonstrates lower performance impact
compared to other methods, while ARIMA exhibits the poorest
performance. This aligns with the results from the previous
section on workload prediction experiments.

Finally, we compare the response time and SLO violation

TABLE IV
COMPARISON OF RESPONSE TIME, SLO VIOLATION RATE AND

RESOURCE USAGE.

Method ARIMA esDNN Informer TempoScale

Average Response Time (ms) 110.52 90.38 80.59 76.09
99th Percentile Response Time (ms) 378.85 327.82 319.50 314.91

Maximum Response Time (ms) 471.07 409.75 399.45 396.02
SLO (250 ms) Violation (%) 2.64 2.50 3.47 1.39
SLO (200 ms) Violation (%) 10.69 8.06 8.61 4.58

CPU Budget (m·s) 119938.00 119285.52 120973.88 119912.67

CPU Usage (m·s) 92466.70 97927.95 103548.11 108095.69

rates as shown in Table IV, CPU budget and usage are
measured in m·s, representing the product of time and re-
source quantity, the experiments are conducted under roughly
the same resource budget to compare resource usage. The
average response time of the TempoScale method is 76.09
ms, achieving best performance. It outperforms ARIMA by
31.15%, esDNN by 15.81%, and Informer by 5.58%. As for
the SLO violation rates, users’ acceptance may vary depending
on specific application scenarios and business requirements.
Generally, most users expect fast response times and high-
performance services, so shorter SLOs (e.g., a few hundred
milliseconds or shorter) are typically considered ideal. Here,
we set two SLO targets, 200 ms and 250 ms, reflecting these
expectations. When the SLO is set to 200 ms, the violation rate
for TempoScale is 4.58%, which is 6.11% lower than ARIMA,
3.48% lower than esDNN, and 4.03% lower than Informer.

Based on the above results, it can be concluded that
compared to more primitive forecasting algorithms such as
ARIMA, TempoScale can improve performance by over 30%.
TempoScale can also improve performance by 5-10% over
novel and innovative algorithms such as Informer and esDNN,
which have been proposed recently. Moreover, the optimiza-
tion approach proposed by TempoScale will also contribute to
efficiency enhancement for enterprises, promoting the devel-
opment of various scenarios (e.g. auto-scaling) in cloud.

VI. CONCLUSIONS AND FUTURE WORK

In order to address the inherent dynamics of clusters and
the variability of workloads, we have proposed an innovative
solution called TempoScale. It is designed to better capture the
correlations in time series data, enabling more intelligent and
adaptive elastic scaling decisions. TempoScale utilizes long-
term trend analysis to reveal the changes in workload and
resource demands, supporting proactive resource allocation
over extended periods. Additionally, it employs short-term
volatility analysis to examine variations in workload and
resource demands, facilitating real-time scheduling and rapid
responsiveness. We conducted experiments on top of K8s with
realistic data from Alibaba, and the results demonstrate the
feasibility of our proposed method. Our approach not only
enhances system performance and stability but also effectively
reduces resource costs, promoting the sustainable development
of cloud computing across various industries. However, the
framework of TempoScale is built on individual microservices
without fully considering the invocation dependency graph
[29] and emergency measures in cases of inaccurate predic-
tions. In future work, we plan to address these aspects to
enhance TempoScale’s capability in handling microservices
with complex dependency graphs and improving robustness
in special situations, and exploring additional integration pos-
sibilities with cloud management platforms.

SOFTWARE AVAILABILITY

The codes have been open-sourced to https://github.com/
lifwen/TempoScale for research usage.

https://github.com/lifwen/TempoScale
https://github.com/lifwen/TempoScale


REFERENCES

[1] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity
in cloud computing: State of the art and research challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2018.
[Online]. Available: https://doi.org/10.1109/TSC.2017.2711009

[2] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing. New York, NY,
USA: Association for Computing Machinery, 2015, p. 167. [Online].
Available: https://doi.org/10.1145/2806777.2809955

[3] M. Chrysopoulos, I. Konstantinou, and N. Koziris, “Deep reinforcement
learning in cloud elasticity through offline learning and return
based scaling,” in 2023 IEEE 16th International Conference on
Cloud Computing (CLOUD), 2023, pp. 13–23. [Online]. Available:
https://doi.org/10.1109/CLOUD60044.2023.00012

[4] J. Dogani, F. Khunjush, and M. Seydali, “Host load prediction
in cloud computing with discrete wavelet transformation (dwt)
and bidirectional gated recurrent unit (bigru) network,” Computer
Communications, vol. 198, pp. 157–174, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366422004479

[5] B. Suleiman, M. M. Fulwala, and A. Zomaya, “A framework for
characterizing very large cloud workload traces with unsupervised
learning,” in 2023 IEEE 16th International Conference on Cloud
Computing (CLOUD), 2023, pp. 129–140. [Online]. Available:
https://doi.org/10.1109/CLOUD60044.2023.00023

[6] T. Wu, M. Pan, and Y. Yu, “A long-term cloud workload prediction
framework for reserved resource allocation,” in 2022 IEEE International
Conference on Services Computing (SCC), 2022, pp. 134–139. [Online].
Available: https://doi.org/10.1109/SCC55611.2022.00030

[7] J. Bi, H. Ma, H. Yuan, and J. Zhang, “Accurate prediction
of workloads and resources with multi-head attention and hybrid
lstm for cloud data centers,” IEEE Transactions on Sustainable
Computing, vol. 8, no. 3, pp. 375–384, 2023. [Online]. Available:
https://doi.org/10.1109/TSUSC.2023.3259522

[8] M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Improved
complete ensemble emd: A suitable tool for biomedical signal
processing,” Biomedical Signal Processing and Control, vol. 14,
pp. 19–29, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1746809414000962

[9] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and
W. Zhang, “Informer: Beyond efficient transformer for long sequence
time-series forecasting,” in AAAI Conference on Artificial Intelligence,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
229156802

[10] M. Xu, C. Song, H. Wu, S. S. Gill, K. Ye, and C. Xu, “Esdnn:
Deep neural network based multivariate workload prediction in cloud
computing environments,” ACM Trans. Internet Technol., vol. 22, no. 3,
aug 2022. [Online]. Available: https://doi.org/10.1145/3524114

[11] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder–decoder for statistical machine translation,”
in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing. Association for Computational
Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available: https:
//aclanthology.org/D14-1179

[12] J. Prassanna and N. Venkataraman, “Adaptive regressive holt–winters
workload prediction and firefly optimized lottery scheduling for load
balancing in cloud,” Wirel. Netw., vol. 27, no. 8, p. 5597–5615, nov
2021. [Online]. Available: https://doi.org/10.1007/s11276-019-02090-8

[13] Y. Xie, M. Jin, Z. Zou, G. Xu, D. Feng, W. Liu, and D. Long,
“Real-time prediction of docker container resource load based on
a hybrid model of arima and triple exponential smoothing,” IEEE
Transactions on Cloud Computing, vol. 10, no. 2, pp. 1386–1401,
2022. [Online]. Available: https://doi.org/10.1109/TCC.2020.2989631

[14] N. K. Biswas, S. Banerjee, U. Biswas, and U. Ghosh, “An
approach towards development of new linear regression prediction
model for reduced energy consumption and sla violation in the
domain of green cloud computing,” Sustainable Energy Technologies
and Assessments, vol. 45, p. 101087, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2213138821000977

[15] H. A. Kholidy, “An intelligent swarm based prediction approach
for predicting cloud computing user resource needs,” Computer
Communications, vol. 151, pp. 133–144, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419303329

[16] R. da Rosa Righi, E. Correa, M. M. Gomes, and C. A. da Costa,
“Enhancing performance of iot applications with load prediction and
cloud elasticity,” Future Generation Computer Systems, vol. 109,
pp. 689–701, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17329229

[17] P. T. Yamak, L. Yujian, and P. K. Gadosey, “A comparison between
arima, lstm, and gru for time series forecasting,” in Proceedings of
the 2019 2nd International Conference on Algorithms, Computing
and Artificial Intelligence, ser. ACAI ’19. New York, NY, USA:
Association for Computing Machinery, 2020, p. 49–55. [Online].
Available: https://doi.org/10.1145/3377713.3377722

[18] L. Ruan, Y. Bai, S. Li, S. He, and L. Xiao, “Workload time
series prediction in storage systems: a deep learning based approach,”
Cluster Computing, vol. 26, pp. 25–35, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:231607863

[19] S. Ouhame, Y. Hadi, and A. Ullah, “An efficient forecasting approach
for resource utilization in cloud data center using cnn-lstm model,”
Neural Comput. Appl., vol. 33, no. 16, p. 10043–10055, aug 2021.
[Online]. Available: https://doi.org/10.1007/s00521-021-05770-9

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[21] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation
learning,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, ser. KDD ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2114–2124.
[Online]. Available: https://doi.org/10.1145/3447548.3467401

[22] Z. Wang and Y. Guan, “Multiscale convolutional neural-based
transformer network for time series prediction,” Signal, Image and
Video Processing, 10 2023. [Online]. Available: https://doi.org/10.1007/
s11760-023-02823-5

[23] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 22 419–
22 430. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf

[24] M. Chen, M. R. Read, P. Arroba, and R. Buyya, “En-beats:
A novel ensemble learning-based method for multiple resource
predictions in cloud,” in 2023 IEEE 16th International Conference on
Cloud Computing (CLOUD), 2023, pp. 144–154. [Online]. Available:
https://doi.org/10.1109/CLOUD60044.2023.00025

[25] D. Xu, W. Cheng, B. Zong, D. Song, J. Ni, W. Yu, Y. Liu,
H. Chen, and X. Zhang, “Tensorized lstm with adaptive shared
memory for learning trends in multivariate time series,” in AAAI
Conference on Artificial Intelligence, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:210177610

[26] M. Xu, L. Yang, Y. Wang, C. Gao, L. Wen, G. Xu, L. Zhang,
K. Ye, and C. Xu, “Practice of alibaba cloud on elastic resource
provisioning for large-scale microservices cluster,” Software: Practice
and Experience, vol. 54, no. 1, pp. 39–57, 2024. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3271

[27] J. Bi, H. Yuan, S. Li, K. Zhang, J. Zhang, and M. Zhou, “Arima-based
and multiapplication workload prediction with wavelet decomposition
and savitzky–golay filter in clouds,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, pp. 1–12, 2024. [Online]. Available:
https://doi.org/10.1109/TSMC.2023.3343925

[28] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’19.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
25–32. [Online]. Available: https://doi.org/10.1145/3297663.3310309

[29] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding,
J. He, and C. Xu, “Characterizing microservice dependency and
performance: Alibaba trace analysis,” in Proceedings of the ACM
Symposium on Cloud Computing. New York, NY, USA: Association
for Computing Machinery, 2021, p. 412–426. [Online]. Available:
https://doi.org/10.1145/3472883.3487003

https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1109/CLOUD60044.2023.00012
https://www.sciencedirect.com/science/article/pii/S0140366422004479
https://doi.org/10.1109/CLOUD60044.2023.00023
https://doi.org/10.1109/SCC55611.2022.00030
https://doi.org/10.1109/TSUSC.2023.3259522
https://www.sciencedirect.com/science/article/pii/S1746809414000962
https://www.sciencedirect.com/science/article/pii/S1746809414000962
https://api.semanticscholar.org/CorpusID:229156802
https://api.semanticscholar.org/CorpusID:229156802
https://doi.org/10.1145/3524114
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1007/s11276-019-02090-8
https://doi.org/10.1109/TCC.2020.2989631
https://www.sciencedirect.com/science/article/pii/S2213138821000977
https://www.sciencedirect.com/science/article/pii/S0140366419303329
https://www.sciencedirect.com/science/article/pii/S0167739X17329229
https://www.sciencedirect.com/science/article/pii/S0167739X17329229
https://doi.org/10.1145/3377713.3377722
https://api.semanticscholar.org/CorpusID:231607863
https://doi.org/10.1007/s00521-021-05770-9
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1007/s11760-023-02823-5
https://doi.org/10.1007/s11760-023-02823-5
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://doi.org/10.1109/CLOUD60044.2023.00025
https://api.semanticscholar.org/CorpusID:210177610
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3271
https://doi.org/10.1109/TSMC.2023.3343925
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3472883.3487003

	Introduction
	Motivation and Feasibility
	Related Work
	Traditional Machine learning-based models
	Neural network-based models
	Attention mechanism-based models
	Critical analysis

	TempoScale: A Resource Scheduler Integrating Short-Term and Long-Term Information
	Preprocessing of data and decomposition of IMFs
	Processing intermediate results using different model
	Short-term prediction model
	Long-term prediction model

	Obtaining the final results through a MLP

	Performance Evaluations
	Experimental setup
	Workload dataset
	Microservices demo application
	Baseline methods

	Profiling
	Predictive Evaluation
	Workload Prediction with Auto-Scaling Evaluation

	Conclusions and Future Work
	References

